ANNEXURE II M.Sc Marine Biotechnology

Preamble

The M.Sc. Marine Biotechnology is supported by the DBT, New Delhi, Govt of India, and was started at Goa University in 1988 with the objective of developing manpower in the field of Marine Biotechnology. The students are imparted training and skills in Marine Biotechnology and empowering them to undertake the challenges in BLUE biotechnology.

The eligibility for the program is B.Sc. Degree under 10+2+3 in any branch of sciences such as Physical, Chemical Biological, Agricultural, Fisheries, Pharmaceutical Medicine Engineering, or Technology with 55% marks. Admission to the program is through a Graduate Aptitude Test - Biotechnology (GAT-B) 2021 entrance examination that is conducted at national level.

Proposed Scheme

For

M.Sc. Marine Biotechnology (1455)

(Applicable from 2022-23)

SEMESTER I				
Course	Course	Credits	Course	
Codes	Titles		Level	
	Discipline-specific Core courses (16	credits)		
MBTC-401	Marine Microbiology & Ecology	3	100	
MBPC-401	Lab I: Techniques in Microbiology,	3	100	
	Marine Biology and Chemistry			
MBTC-402	Immunology and Marine pathogenesis	3	100	
MBPC-402	Lab II: Immunology & Marine	2	100	
	Pathogenesis			
MBTC-403	Biophysical Principles & Analytical	2	100	
	Techniques			
MBPC-404	Lab III: Biochemistry and analytical	3	100	
	techniques Discipline-specific Elective courses (Any	(1 anadita)		
MBTE-401	Concepts in Biochemistry	2	100	
	Biostatistics	2		
MBTE-402		2	100	
MBTE-403	Mathematics for Biologists		100	
MBTE-404	Biology of the Extremophilic Organisms	2	100	
	Semester II	2	100	
MBTC-405	Oceanography and Marine Bioresources	3	100	
MBTC-406	Aquaculture Technology	3	200	
MBTC-407	Genetics and Molecular Biology	3	100	
MBPC-407	Lab IV: Genetics and Molecular Biology	2	200	
MBTC-408	Cell and Developmental Biology	3	100	
MBPC-409	Lab V: Plant and Animal Tissue Culture	2	100	
	Discipline-specific Elective courses (Any	4 credits)		
MBTE-405	Bioinformatics	2	200	
MBPE-405	Lab VI: Lab in Bioinformatics	2	200	
MBTE-406	Nanobiotechnology	2	200	
MBTE-407	Vaccine Technology	2	200	
	Semester III	<u> </u>		
	Research specific Elective courses (Any	8 credits)		
MBTR-501	Recombinant DNA Technology	3	300	
MBPR-501	Lab VII: Recombinant DNA Technology	2	300	
MBTR-502	Bioprocess Technology and Marine	3	300	

	Bioprocessing		
MBPR-502	Lab VIII: Bioprocess technology and	2	300
	Marine Bioprocessing		
MBTR-503	Marine Food Technology	2	200
	Elective Generic courses (Any 1	2 credits)	
MBTG-501	Virology	2	200
MBTG-502	IPR, Biosafety & Bioethics	3	100
MBTG-503	Potential of Marine Biotechnology	3	300
MBTG-504	Genomics & Proteomics	2	200
MBTG-505	Solid Waste Management	3	300
MBIG-501	Summer/Winter Internship	2	200
	Semester IV		
	Research specific Elective courses (Any	4 credits)	
MBTR- 509	Research Methodology	2	200
MBTR-510	Synthetic Biology	2	200
MBTR-511	Plant and Animal Biotechnology	2	300
MBFR-501	Field Trip	2	200
MBSR-501	Scuba Diving	2	200
Discipline-specific dissertation			
MBPD- 501	Dissertation	16	400

Course level 100: No prerequisite for the course. Course level 200: At least one prerequisite course is required. Course level 300: More than two prerequisite courses are required. Course level 400: Courses from Semester I, II, and III are prerequisites.

SEMESTER- I

Course Code	MBTC-401	
Title of the	MARINE MICROBIOLOGY & ECOLOGY	
Course		
Credits	3	
Course Objectives	The objective of this course is to provide information about the micro	
Objectives	in the aquatic environment, their role and interaction with the marine	environment
Learning	• Explain the different features of marine ecosystems and	the microbial
Outcomes	diversity in oceans;	
	• Describe and discuss marine microbes in terms of physiological	capability
	and their biogeochemical role.	
Contents:	MODULE I	
	Classification of the maxime environment	
	• Classification of the marine environment.	
	• Marine microbial habitats, Estuarine Ecosystems: Rocky	
	shores, Sand dunes, Salt marshes, Deep Sea, hydrothermal	
	vents, mangroves, and coral reefs.	
	• Diversity of Marine microorganisms: Archaea, Bacteria,	
	Cyanobacteria, Algae, Fungi, Viruses, Viroids, and Prions.	
	• Characteristics of marine microorganisms.	15 hours
	• Specialized microorganisms: actinomycetes anaerobes.	
	• Extremophiles: barophiles, thermophiles, psychrophiles,	
	halophiles, polyextremophiles,	
	• An overview of the organization and cell structure of	
	prokaryotes and Archaea:	
	i) cell wall ii) outer membrane iii) cytoplasmic membrane iv)	
	flagella & specialized movements in microbes v) cell	
	inclusions iv) differences among the groups.	

	MODULE II	
	 Techniques in Marine microbiology: Sampling: Water, Sediments. Direct observation and enumeration of microbes: Light and electron microscopy to study morphology and structure of microbes. Culture-base methods for isolation and identification of microbes. Phenotypic and Genotypic testing, polyphasic methods of identification. Chemotaxonomy, Metagenomics. Bergey's manual & identification of marine bacteria. 	15 hours
	 MODULE III Microbial nutrition: i) autotrophic & heterotrophic modes, ii) defining culture media to support growth, iii) selective and differential culture media. Bacterial growth kinetics: i) growth curve, the mathematical expression of growth & measurement of growth ii) synchronous growth iii) factors affecting growth iv) Chemostat & turbidostat. Flagella and specialized movements in microbes, Quorum sensing, Chemotaxis, Phototaxis, Bioluminescence and indicator species and Biological rhythms. 	15 hours
Pedagogy References/ Reading	 Lectures, tutorials, assignments Gram, L., (2009) Microbial Spoilage of Fish and Seafood, Springer Horikoshi K., Antranikian G., Bull A. T, Robb F. T. and Stetter, K. O., (2011) Extremophiles handbook, Springer Kirchman, D.L, Gasol, J.M., (2018), Microbial ecology of the Oceans. Wiley- Blackwell, New York. Madigan. M.T., Buckley, D.H., Sattley, W.M., Stahl, D.A.(2021) Brock Biology of Microorganisms, Pearson Publisher. Munn, C.B., (2020) Marine Microbiology: Ecology and Applications. CRC 	

Press	
Paul, J., (2001) Methods in Microbiology: Marine microbiology, Academic	;
Press.	
Pelczar M.J. Jr., Chan E.C.S. and Kreig N.R. (2001) Microbiology. CBS	\$
Publishers.	
Surajit D., Hirak Ranjan D., (2018) Microbial Diversity in the Genomic	;
era, Elsevier	

Course Code:	MBPC-401	
<u>Title</u>	LAB I-TECHNIQUES IN MICROBIOLOGY, MARINE BIOLOGY AND CHEMISTRY	
<u>Credits</u>	3	
<u>Course</u> Objectives	• To introduce the students to various methods to isolate and culture bacteria using different media, learn marine sampling methods and measure the physical and chemical parameters of the marine aquatic system.	
Learning Outcomes	 Upon completion of the course, the student will be able to Use appropriate media to isolate bacteria from different ecosyste Study and group bacteria on the basis of morphological and bioc Understand the various techniques used for marine sampling. estimate the planktons and elemental composition in seawater. 	
<u>Contents:</u>	 Preparation of solid & liquid media, Differential and Selective media: Isolation of bacteria from seawater /sediments samples, Enumeration: serial dilution methods, plating. Maintenance of organisms: Streaking, slants and stabs cultures Study of morphology and cultural characteristics. Gram staining. Motility Antimicrobial sensitivity test and demo of drug resistance. Cultivation of fungi: Slide, chunk and cover slip techniques. 	45 hours

	CRC Press LLC.	, and Analyses.	
	 Pvt. Limited. 11. Yuncong Li, Kati M., (2019) Water Quality Concepts, Sampling 		
	 of Microorganism. Pearson Education. 10. Vasanthakumari R., (2009) Practical Microbiology. (2009). India: I 		
	Medical Publishers Pvt. Limited.9. Sattley, W., Madigan, M., Bender, K., Stahl, D., Buckley, D. (2017)	Brock Biology	
	8. Sastry, A. (2021). Essentials of Practical Microbiology. India: J	Jaypee Brothers	
	Publisher	cology. Milegel	
	Elsevier Science. 7. Omori, M., Ikeda, T. (1992). Methods in Marine Zooplankton E	cology Krieger	
	6. McCance, M. E., Harrigan, W. F. (2014). Laboratory Methods in	n Microbiology.	
	Press.		
	5. Leo M.L. Nollet, Leen S. P. Gelder De (2013) Handbook of Water	Analysis. CRC	
	 Grasshoff K., Kremling K., Ehrhardt, M., (2009) Methods of Sea Wiley Publisher. 	water Analysis,	
	Benthos.Wiley Publisher.		
	3. Eleftheriou A, and McIntyre A., (2005) Methods for the Study of Marine		
	Communities: Field Biology and Environment. Wiley publisher.		
	2. Bakus, G. J., Bakus, G. J. (2007). Quantitative Analysis of Ma	arine Biological	
<u>References/</u> <u>Reading</u>	examination of water and wastewater. American Public Health Asso		
	1. Baird R., Eaton A. D., Rice E. W., Bridgewater L. (2017) Standard		
Pedagogy	Hands-on experiments in the laboratory, learning skills in sampling	g techniques.	
	• Salinity, pH & alkalinity.		
	 Dissolved oxygen 		
	 • Chlorophyn • Nutrients: nitrates, nitrites, phosphates, silicates 		
	Estimations:Chlorophyll		
	• Benthos		
	• Nekton	45 110015	
	Phytoplankton & Zooplankton	45 hours	
	• Sampling (Field trips) and identification:		
	• Samplers: water samplers, dredges, grabs, snappers.		

Course Code	MBTC-402	
Title of the	IMMUNOLOGY AND MARINE PATHOGENESIS	
Course Credits	3	
<u>Course</u> Objectives:	• To provide a basic knowledge and appreciate the components of the	
	human immune response that work together to protect the host.	
	• To understand the concept of immune-based diseases as either a deficiency of components or excess activity as hypersensitivity	
	• To gain an insight into the mechanisms that lead to beneficial	
	immune responses, immune disorders and immune deficiencies.	
	• To introduce the common fish/shellfish pathogens, understand their	
	growth characteristics and control and preventive measures.	
<u>Learning</u> Outcomes	• The mode of continuous assessment and formulation of tests enables students to handle competitive entrance exams. The basic overview of Immunology and Marine Pathogenesis strengthens their	
	foundations for a career in Biotechnology and Marine	
	Biotechnology.	
Contents:	MODULE I – Concepts and Basics	
	• Introduction – History and scope of immunology	
	• Innate immunity:- factors, features and processes	
	• Acquired:- the Specificity, memory, recognition of self from non-self.	
	 Cells of the immune system: Hematopoiesis and differentiation, Lymphoid and Myeloid lineage, 	
	lymphocyte trafficking, B lymphocytes, T lymphocytes,	
	macrophages, dendritic cells, natural killer and 15 hours	
	lymphokine-activated killer cells, eosinophils and mast	
	cells, lymphocyte subpopulations and CD markers.	
	 Organization of lymphoid organs:-MALT, GALT, SALT 	
	• Phagocytosis: oxygen-dependent/ independent killing	
	intracellularly.	
	• Major histocompatibility complexStructure of MHC	

molecules, basic organization of MHC in human,	
haplotype-restricted killing.	
• Nature and biology of antigens and super antigens:	
haptens, adjuvants, carriers, epitopes, T-dependant and	
T-independentt antigens	
 <u>MODULE II – Defence Components: Constituents of immune</u> system and effector mechanisms of immune responses Humoral immunity: cells, antibody formation, primary 	
and secondary response.	
• Immunoglobulins – structure, distribution and function.	
• Antigen – Antibody interactions: forces, affinity,	
avidity, valency and kinetics.	
• The basics of Immuno-diagnostics.	
• Complement system: mode of activation, classical,	
alternate and MBL pathways. Structures of key	15 hours
components.	
• Cell mediated immune responses: cell activation, cell-	
cell interaction and cytokines.	
• Cell-mediated cytoxicity: Mechanism of T cell and NK	
cell mediated lysis, antibody-dependant cell-mediated	
cytoxicity	
• Hybridoma technology and monoclonal antibodies.	
• Hypersensitivity: An introduction to the different types.	
 Introduction to autoimmune diseases. 	
MODULE III – Marine Pathogens and Disease Control	
• Introduction to finfish and shellfish diseases: bacterial,	
fungal, parasitic, nutritional, environmental and their	
control.	
Prevention of Fish diseases	
• Human bacterial Pathogens associated with fishes and	

	their products - Aeromonas spp., Clostridium spp., Listeria spp., Plesiomonas, Salmonella spp., Staphylococcus aureus, Vibrio spp. and common Enterobacteriaceae		
	• Marine Biotoxins as biological hazards associated with fish and fishery products.		
Pedagogy	Lectures, tutorials, assignments		
<u>References/</u> <u>Readings</u>	1. Luttmann W., Bratke K., Kupper M., and Myrtek D (2009).		
	Immunology. Academic Press		
	2. Male D., Brostoff J., Roth D., Roitt I., (2013) Immunology.		
	Elsevier Saunders publication		
	3. Parthiban F., Felix S. (2018) Microbiology of Fish and		
	Fishery Products, Daya Publishing House.		
	4. Punt, J., Stranford, S., Jones, P., Owen, J.A.,(2018) Kuby		
	Immunology W.H. Freeman		
	5. Roitt I.M. Delves P.J. Martin S. J., Burton D R, Roitt I.M.		
	(2017) Essential Immunology Wiley-Blackwell		
	6. Ward, D.R. and Hackney, C.A., (2012). Microbiology of		
	marine food products. Springer Science		
	7. Woo, P. T. K., Bruno, D. W (2011). Fish diseases and		
	disorders. Volume 3: viral, bacterial and fungal infections.		
	CABI Publishing.		

Course Code	MBPC-402	
Title of the course	Lab II: IMMUNOLOGY AND MARINE PATHOGENESIS	
Credits	2	
Course Objectives	This course involves learning techniques to identify reactions in the lab that form the basis for application in immunodiagnostics and also to gain an insight into the evaluation of marine pathogens.	
Learning Outcomes	• Key hands-on experience in converting and applying theoretical knowledge to the laboratory. Students become familiar with techniques	

	involved in immunology as well as in the study of marine pa	thogens
Contents:	 Determination of antibody titer using the double immunodiffusion Assessment of similarity between antigens using Ouchterlony's double diffusion test Estimation of antigen concentration using radial immunodiffusion Quantitative precipitation assay DOT ELISA Latex agglutination Immunoelectrophoresis 	30 hrs
	 Rocket immunoelectrophoresis Sampling of fish and shellfish for disease diagnosis Identification of bacteria- staining techniques and biochemical techniques Observation of cellular components of fish blood and shrimp hemolymph Isolation and characterization of fungi from fish & slide culture of fungi SDS-PAGE analysis of fish proteins Fish/shrimp cell culture. 	30 hrs
Pedagogy References/ Reading	 14. Fish/shrimp cell culture. 15. Identification of fish pathogens using various techniques. Hands-on experiments in the laboratory, video, online data 1. Bullock, G.L.,(2014) Diseases of Fisheries . Narendra Publishing House 2. Edward J. Noga, (2010). Fish Disease: Diagnosis and treatment, Wiley Blackwell. 3. Freshney. I.R., (1998). Culture of Animal Cells. Wiley-Blackwell 4. Inglis, V.,(2013) Bacterial Diseases of Fish , Wiley Publications 5. Janeway, C.A., Travers, P., Walport, M. and Shlomchik, M.J. (2001) Immunobiology: The Immune System in Health and Disease, Garland Publishing, USA. 6. Joshi, K.R., Osama, N.O. (2012) Immunology, 5th Edition, Agrobios Ltd, India. 7. Talwar G.P., Gupta S.K (2017) A Handbook Of Practical And Clinical 	

	Immunology Vol I CBS Publishers.
8.	Thanwal. R., (2014) A Handbook of Diseases, Astha Publishers &
	Distributors.

Course Code	MBTC-403		
Title of the course	BIOPHYSICAL PRINCIPLES AND ANALYTICAL TECHNIQUES		
Credits	2		
Course Objectives Learning	The course is designed to provide a broad exposure to basic techniques used in Modern Biology research. The goal is to impart a basic conceptual understanding of the principles of these techniques and emphasize the biochemical utility of The students are expected to have a clear understanding of all analytical techniques such that the barrier to implement the same is abated to a great extent. Students will learn to combine previously acquired knowledge of physics and		
Outcomes Contents:	 chemistry to understand the biochemical processes in the cell. <u>MODULE I</u> Description of Macromolecular Structure, Intermolecular and Intramolecular forces in protein, DNA and other biomolecules. Diffusion, Brownian motion and sedimentation, determination of molecular weight from sedimentation and diffusion. Concept and application of Chemical and Physical equilibria in biological system Nature and Role of Ionic, Covalent and Non-covalent Interaction in molecular conformationon, scaffolding and packaging of protein and DNA Thermodynamics of protein folding: Protein folding kinetics, Misfolding and aggregation. Physical biochemistry of cell: Chemical forces translation and rotation, diffusion, directed movements, biomolecules as machines, work, power and energy, thermal, chemical and mechanical switching of biomolecules, 	15 hours	

	 Biochemical and biophysical characterizations of biomolecules: Fluorescence from GFP), UV-VIS absorption and emission spectra resulting from intrinsic Tryptophan and GFP chromophores, Fluorescence quenching and polarization studies, Unfolding and refolding studies using CD. protein diffusion, dynamics by fluorescence correlation spectroscopy. MODULE II Spectroscopy: Electromagnetic radiations in spectroscopy, Fluorescence spectroscopy, Emission, excitation, Quenching, Quantum Yield. Nuclear magnetic resonance Spectroscopy. Electron spin resonance spectroscopy. Centrifuge: Basic concepts of centrifugation. Calculation of g value from RPM. Types of rotors used, Differential centrifugation, Density gradient centrifugation. Rate-zonal centrifugation, Isopycnic centrifugation. Magnification, Phase-contrast microscopy, Confocal microscopy, High resolution microscopy. Nanoscopy: Atomic force Microscopy Scanning-tunneling Microscopy and Cryo-electron microscopy. X-ray diffraction
Pedagogy	Lectures, tutorials, assignments
References/	1. Anders L. et al. (2016) Textbook of Structural Biology. World Scientific.
Reading	2. Atkins, de P. (2011) Physical Chemistry for the Life Sciences. W.H. Freeman.
	3. Bhavna P., Fulekar, M.H (2019), Bioinstrumentation, Wiley Int.
	4. Branden C., and Tooze J., (1998) Introduction to Protein Structure, Garland
	Science.
	5. Rodney C., (2017). Biophysics: An IntroductionWiley Int.
	6. Salman K., and Diaz, Z., (2016) Principal And Techniques of

	Bioinstrumentation, Intelliz Publisher
7.	Schulz GE and Schirmer RH, (1998) Principles of Protein Structure, Springer
	Verlag.
8.	Stout G.H., and Jensen L.H., (1989) X-ray Structure Determination: A
	practical guide. John Wiley and Sons Inc., New York.
9.	Subramaniam, M. A (2021) Biophysics: Principle and techniques, MJP
	Publishers.
10.	Tinoco Jr. I. Sauer K., Wang J.C., Puglisi J. D., Harbison G., Rovnyak D.
	(2013) Physical Chemistry: Principles and Applications in Biological
	Sciences Pearson Publishers
11.	Van Holde K. E., Johnson, C. Ho P. S. (2005) Principles of Physical
	Biochemistry. Prentice Hall.

Course code	MBPC-404		
Title of the course	LAB III: BIOCHEMICAL AND ANALYTICAL TECHNIQUES		
Credits	3		
Course Objectives	The objective of this laboratory course is to introduce students to experimentation in biochemistry. The course is designed to teach the utility of these experimental methods in a problem-oriented manner.		
Learning Outcomes	 Students should be able to: Elaborate concepts of biochemistry with easy-to-run experiments. Familiarize with basic laboratory instruments and understand principles underlying measurements using those instruments for experiments in biochemistry. 		
Contents:	 UV-Visible spectroscopic analysis. Estimation of proteins by the Lowry/Bradford's method Estimation of reducing sugars Enzyme assay Ammonium sulfate precipitation and dialysis Specific activity, fold purification, percentage yield of enzyme Protein subunit molecular weight determination by SDS- PAGE. Thin-layer chromatography. 	45 hours	

		r		
	9. Column chromatographic techniques: ion exchange/Affinity/Gel filtration			
	10. Biochemical assays using ELISA plate reader.			
	11. Compound and Fluorescence microscopy demonstration	45 hours		
	12. Analysis of a biological specimen by SEM			
	13. Fluorescence imaging of fixed stained and live cells			
	14. Demonstration of fluorescence spectroscopy.			
	15. Density gradient ultracentrifugation			
Pedagogy	Hands-on experiments in the laboratory, video, online data			
References/	1. Atkins, de Paula. (2011) Physical Chemistry for the Life	Sciences (2nd		
Reading	Edition). W.H. Freeman.			
	2. Atkins, de Paula. (2015), Physical Chemistry for the Life	Sciences (2nd		
	Edition). W. H. Freeman			
	3. Boyer, R. (2000). Modern experimental biochemistry. Pear	rson Education		
	India.			
	4. Friedrich L., Engels, J. W. (2018) Bioanalytics: Analytical Methods and			
	Concepts in Biochemistry and Molecular Biology. Wiley-V	CH publisher		
	5. James J.F. (2017), An Introduction to practical labor	oratory optics,		
	Cambridge University press.			
	6. Jayaraman, J. (2011). Laboratory Manual of Biochemis	try. New Age		
	International Private Limited			
	7. John G., (2020), Biological Centrifugation CRC Press.			
	8. K. E. van Holde, C. Johnson, P. S. Ho (2005) Principl	es of Physical		
	Biochemistry, 2nd Edn., Prentice Hall.			
	9. Mu, P., & Plummer, D. T. (2001). Introduction to practica	l biochemistry.		
	Tata McGraw-Hill Education.			
	10. Prakash S. Bisen, (2014), Laboratory Protocols in Applied	Life Sciences.,		
	Taylor and Francis Publisher			
	11. Tinoco, Sauer, Wang, and Puglisi. (2013) Physical Chemis	stry: Principles		
	and Applications in the Biological Sciences. Prentice Hall, I	nc.		
	12. Ulrich K., (2017) Fluorescence microscopy: From Principle	to application,		
	Wiley Int.			
	13. Wilson, K., Walker, J. (Eds.). (2010). Principles and	techniques of		
	biochemistry and molecular biology. Cambridge university	press.		
	1			

Course Code	MBTE-401	
Title of the course:	CONCEPTS IN BIOCHEMISTRY	
Credits	2	
Course Objectives	• The major objective of this course is to build upon the knowledge of basic biochemical principles with emphasis on different metabolic pathways and their integration. Attention is drawn to the structure-function relationships of biomolecules.	
Learning Outcomes	• Gain fundamental knowledge in biochemistry and understand the role of enzymes in the regulation of metabolic pathways.	
Contents:	MODULE I	
	 Biochemistry: the molecular logic of life. Amino acids, proteins, nucleic acids, carbohydrates, and lipids. Vitamins and hormones. Forces that stabilize biomolecules: electrostatic and van der Waal's interaction, hydrogen bonding. Interactions with solvents, Hydrophobic effect. Basic Thermodynamics: Laws of thermodynamics. Concepts of ΔG, ΔH, and ΔS. Chemical kinetics: Concepts of Order and molecularity of a chemical reaction. Derivation of first and second-order rate equation, measurement of rate constants. Concept of activation energy. Enzymology: Introduction and classification of enzymes. Types of enzymatic reaction mechanisms, Enzyme kinetics, enzyme inhibition, Regulatory enzymes. Isozymes, Zymogen and Ribozyme. Examples of enzymatic reactions. 	15 hours
	MODULE II	
	 Basic concepts and design of metabolism - glycolysis, gluconeogenesis Pyruvate oxidation, Citric acid cycle Oxidative phosphorylation; the importance of electron 	

	transfer in oxidative phosphorylation; F ₁ -F ₀ ATP		
	Synthase; shuttles across mitochondria; regulation of		
	oxidative phosphorylation, inhibitors of electron transport		
	chain. 15 hours		
	Glyoxylate cycle		
	• The pentose phosphate pathway		
	 Fatty acid synthesis, β-oxidation; biosynthesis of 		
	membrane lipids and sterols with specific emphasis on		
	cholesterol metabolism and the mevalonate pathway		
	Amino acid metabolism; nucleotide metabolism		
	Photosynthesis and photorespiration		
Pedagogy	Lectures, tutorials, assignments.		
References/	1. Abali E. E., Cline S. D., Franklin D. S., Viselli S. M., (2021) Lippincott		
Reading	Illustrated Reviews: Biochemistry Wolters Kluwer publisher		
	2. Miesfeld R. L., McEvoy M. M., (2020) Biochemistry. Worldwide publisher		
	3. Murray, R.K. et al (2022). Harper's Illustrated Biochemistry McGraw Hill		
	publisher.		
	4. Nelson D.L. (2017) Lehninger Principles of Biochemistry. W.H. Freeman &		
	Co.		
	5. Papachristodoulou D., Snape A., Elliott W. H., and Elliott D. C. (2018).		
	Biochemistry and Molecular Biology. Oxford University publisher.		
	6. Stryer L; Berg J., Tymoczko J., Gatto G. (2019). Biochemistry New York,		
	Freeman publisher.		
	7. Voet, D., Voet, J.G., Charlotte W.P. (2018). Fundamentals of Biochemistry.		
	Life at the molecular level. Wiley publisher.		

Course Code	MBTE-402
Title of the	BIOSTATISTICS
course	
Credits	2
Course Objectives	The objective of this course is to introduce students to statistical methods and to understand underlying principles, as well as practical guidelines of "how to do it" and "how to interpret it" statistical data.
Learning	Upon completing this course, students should be able to –

Outcomes	• understand how to summarize statistical data;	
	• apply appropriate statistical tests based on an understanding of	the study
	question, type of study, and type of data;	
	• Interpret results of statistical tests.	
Contents:	MODULE I	
	• Scope of Biostatistics	
	• Brief description and tabulation of data and its graphical	
	representation, and frequency distributions.	
	• Measures of Central Tendency and dispersion: mean,	
	median, mode, range, standard deviation, variance,	15 hours
	coefficient of variation, skewness, kurtosis	
	• Displaying data: Histograms, stem and leaf plots, box plots	
	• Probability analysis: axiomatic definition, axioms of	
	probability: addition theorem, multiplication rule,	
	conditional probability, and applications in biology.	
	MODULE II	
	• Counting and probability, Bernoulli trials, Binomial distribution,	
	and its applications,	
	Poisson distribution	15 hours
	• Normal distribution, z, t, and chi-square tests, levels of	
	significance	
	• Testing of hypotheses: null and alternative hypotheses, Type I	
	and Type II errors	
	• Simple linear regression and correlation	
	Analysis of variance	
Pedagogy	Lectures, tutorials, assignments	
<u>References/</u> <u>Reading</u>	1. Arora P.N. and Malhan, P.K. (2006), Biostatistics. Himalaya Publishi	ng House.
Iteluing	House.	
	2. Kothari, C. R.,(2013) Quantitative Techniques, Vikas Publishing	
	3. Mahajan B.K., (2018), Methods in Biostatistics: for Medical S	tudents and
	Research Worker. Jaype Brothers, 4 Rao K. Surva (2010) Biostatistics for Health and Life Science	Himolowa
	4. Rao K. Surya (2010), Biostatistics for Health and Life Science	s, minalaya
	Publishing House.	

5. Rastogi, V. B. (2009). Fundamentals of Biostatistics. Ane Books Pvt Ltd.
6. Samuels, JA Witmer (2016) Statistics for the Life Sciences. Prentice Hall

Course Code	MBTE-403		
Title	MATHEMATICS FOR BIOLOGISTS		
Credits	2		
Objectives			
Learning outcomes	• Gain a broad understanding of mathematics	Gain a broad understanding of mathematics	
	• Recognize the importance and value of mathematic	al thinking,	
	understand the use of mathematics to describe	biological	
	processes and their use in problem-solving, and une	derstand the	
	diverse phenomena that exist in biological systems.		
	Module I		
Contents	• Linear equations, functions: slopes-intercepts, forms		
Contents	of two-variable linear equations;		
	• Constructing linear models in biological systems.		
	• Quadratic equations (solving, graphing, features of,		
	interpreting quadratic models, etc.)	15 hours	
	• Introduction to polynomials, graphs of binomials		
	and polynomials; Symmetry of polynomial		
	functions,		
	• Basics of trigonometric functions, Pythagorean		
	theory.		
	• Graphing and constructing sinusoidal functions,		
	imaginary numbers, complex numbers, adding-		
	subtracting-multiplying complex numbers,		
	• Basics of vectors, introduction to matrices.		
	Module II		
	• Images as 2D/3D Functions, Functions and its		
	derivatives, Computing Derivatives of Curves, Rules for		
	Calculating Derivatives.		
	• Curvature and Second Derivative Plotting Curves,		
	Numerical Calculation of Derivatives., Function,	15 hours	
	Derivatives and Series Expansion Differential calculus		

	 (limits, derivatives), integral calculus (integrals, sequences, and series, <i>etc.</i>). Population dynamics; oscillations, circadian rhythms, developmental patterns, Symmetry in biological systems, fractal geometries, size limits & scaling in biology, Modelling chemical reaction networks and metabolic networks 	
Pedagogy	Lectures, tutorials, assignments	
References/Reading	1) Aggarwal, S.K., (2008) Bio Mathematics. Alps Book Publishers.	
2) Aitken, M., Broadhursts, B., & Haldky, S. (2009) Mathematics		
	biological scientists. Garland Science.	
	3) Bairagi N., (2021) Introductory Mathematical Biology. U. N. Dhur	
	and Sons Private Limited Publisher	
	4) Foster, P.C. (1999) Easy mathematics for biologists. Taylor and	
	Francis	
	5) Robeva R (2013) Mathematical concepts and methods in modern	
	biology using Modern Discrete Models. Academic Press	
	6) Stroud, K. A., & Booth, D. J. (2009). Foundation Mathematics.	
	Palgrave Macmillan.	

Course Code	MBTE-404	
Title	BIOLOGY OF THE EXTREMOPHILIC ORGANISMS	
Credits	2	
Objectives	• To obtain knowledge regarding the existence of extreme habitats.	
	• To understand how the strategies are adopted to overcome extreme conditions.	
Learning outcomes	 Understands the mechanisms of adaptation adopted by different organisms in extreme habitats. Bioprospecting of the extremophiles for biotechnological applications 	
	Module I	
Contents	 Thermophiles: Tree of life Types of Extreme habitats based on environmental variables/sources: Low Temperatures: Polar regions (Antarctica and Arctic). 	

•	High temperatures: Deserts, Hot springs,	
	hydrothermal vents, Deserts.	
	Pressure: Deep-sea environments, Subsurface	
	rocks, Mariana Trench.	15 hours
	Vacuum: Space station, space habitation.	
•	Desiccation: extreme hypersaline environments,	
	deserts.	
•	Hypersaline: coastal lagoons, salt and soda lakes,	
	salterns, deep-sea brine pools, brine channels in sea	
	ice, and fermented foods and pickling brines.	
•	pH: <u>Acidic</u> [Solfataric fields (sulfuric volcanic	
	fields), geysers, sulfuric acid pools, acid mine	
	drainages from coal and metal mining waste] or	
	Alkaline (Soda lakes and soda deserts).	
•	Low oxygen: Low or depleted oxygen level in water	
	bodies (anthropogenic activities, pollution,	
	eutrophication, algal growth)	
•	Methane: Natural wetlands, freshwater lakes,	
	streams, rivers, estuarine and coastal areas, termite,	
	and wild ruminant guts, terrestrial and marine seeps,	
	volcanoes, geothermal vents, gas hydrates and	
	methane produced from biomass combustion (i.e.,	
	wildfires). Anthropogenic sources agriculture, with	
	cattle and rice cultivation as the largest contributors,	
	fossil fuels, waste (ex. landfills, sewage), and	
	biomass/biofuel burning.	
•	Categories of extremophiles: Thermophile,	
	Halophile, Psychrophile, Alkaliphile, Acidophile,	
	Piezophile or barophile, Xerophiles, Anaerobic,	
	methanogenic, metal resistant, radiation resistant,	
	Endoliths.	
	Module II	
	Homeostasis, enantiosis (physiological/biochemical)	
•	Thermogenesis, exothermic, endothermy molecular	
	mechanisms (stability of proteins, catalytic rates)	

	Stress proteins: heat shock, chaperonins, SAPKs
	• Freeze avoidance/tolerance: antifreeze proteins, ice
	nucleation, frost (cold) hardiness, Membrane
	structures, and temperature.
	• Life under pressure: barophilic bacteria, metazoan,
	Deep diving penguins, mammals
	• Energy metabolism – the role of oxygen (normoxia,
	hypoxia, anoxia) physiological adaptations 15 hours
	(hibernation, torpor, estivation)
	• Photosynthesis - physiological and biochemical
	adaptations to extreme light and temperature
	• Ionizing radiation - mechanism of radiation
	resistance
	• Life with limited water - arthropods, reptiles
	• Hot, dry environments - mammalian physiological
	adaptations
	• Mechanisms to avoid osmotic stress acid and
	alkaline environments
	• Overcoming heavy metal and toxin tolerances,
	Biotechnological application of extremophiles
Pedagogy	Lectures, tutorials, assignments
References/Reading	1) Anitori, R.P., (2012) Extremophiles: Microbiology and
	Biotechnology. Caister Academic Press.
	2) Durvasula, R.V., and Subba Rao.D.V. (2018). Extremophiles:
	From Biology to Biotechnology. CRC Press.
	3) Elster J., Prisco, G.di, Huiskes, A.H.L, Edwards, H.G.M., (2020)
	Life in Extreme Environments., Insights in Biological Capability.
	Cambridge University Press.
	4) Gunde-Cimerman N, Oren, A., Plemenitaš a.,(Ed)
	(2005)Adaptation to Life at High Salt Concentrations in Archaea,
	Bacteria, and Eukarya. Springer Publisher.
	5) Richa, S. and Vivek S., (2020) Physiological and
	Biotechnological Aspects of Extremophiles. Academic Press.
	6) Singh Om V.(2012) Extremophiles: Sustainable Blackwell
	7) Wharton D.A., (2002) Life at the Limits: Organisms in Extreme
	Environments Cambridge Press.

SEMESTER II

Course Code	MBTC-405	
Title of the Course	OCEANOGRAPHY AND MARINE BIORESOURCES	
Credits	3	
Course Objective:	• Introduce students to the marine environment and its physical features; Introduce students to marine life, their habitats and adaptations.	
Learning Outcomes	 At the end of this course, students will be able to: Understand the status and trends of major marine resources Understand how oceans influence the climate. Familiarise with marine life and factors influencing primisecondary production. 	ary and
Contents:	 <u>Module 1: (Marine life diversity and processes)</u> Classification of the marine environment Marine bioresources. Marine microbes (viruses, bacteria, archaea, protists, fungi) Plankton (phytoplankton and zooplankton) Marine algae and plants (seaweeds, sea grasses, mangrove plants) Invertebrates: sponges, cnidarians, polychaetes, crustaceans, marine worms, molluscs, echinoderms, arthropods, Non-craniate (non-vertebrate) chordates, Vertebrates Marine fishes (bony, cartilaginous, jawless fishes) Marine tetrapods (amphibians, reptiles, birds, mammals) Adaptations of organisms to different habitats Marine biomass and productivity - primary production, photosynthetic efficiency; secondary production, productivity 	15 hours

distribution in ocean environment, Mechanism and factors affecting	
primary production.	
• Bio-communication in oceans, Quorum sensing, Microbe-	
microbe interaction, Microbe-seaweed interaction, Microbe-	
metazoan interaction, Population connectivity	
• Species abundance, richness and diversity indices, Biogeography,	
Recruitment, Growth, Mortality.	
• Food web dynamics and ecosystem functioning, Microbial loop -	
Role of microbes in marine food web dynamics,	
• Biogeochemical processes: Nutrient cycling, carbon cycle,	
Nitrogen cycle, Sulphur cycle, Iron cycling, Phosphorus cycling	
and other cycles.	
• Culture of microalgae and invertebrates.	
Module 2: (Physical Oceanography)	
•Ocean atmosphere interface	
• Circulation: Coriolis effect, Ekman transport, Langmuir	15
circulation.	hours
• Planteray waves: Kelvin and Rossby waves.	
• Climate variability: Pacific decadal oscillation, North Atlantic	
oscillation, and Arctic oscillation, thermohaline circulation	
• El Niño-Southern Oscillation: El Niño & La Niña and its effect	
on global climate	
• Ocean currents: Antarctic Circumpolar Current, Deep ocean	
(density-driven), Western boundary currents (Gulf Stream,	
Kuroshio Current, Labrador Current, Oyashio Current, Agulhas	
Current, Brazil Current, East Australia Current); Eastern Boundary	
currents (California Current, Canary Current, Peru Current,	
Benguela Current)	
• Ocean gyres: Major gyres, Tropical gyres, Subtropical gyres,	
Subpolar gyres	
• Tides, Tsunamis, Wind waves and its effects	
 Plate tectonics, Mid-oceanic ridge spreading and convection 	
Module 3: (Chemical Oceanography)	
	15
Seawater composition and its properties	hours

	Characterization of sediments: constituents, texture and mass
	properties
	• Types of Biogeochemical cycles in oceans (trace elements)
	• Isotope geochemistry
	• Oceanic anoxic events and dead zones
	• Biological pump
	Ocean acidification and its significance
Pedagogy	Lectures/tutorials/assignments
	1. Agarwalk et. al., (1996) Biodiversity and Environment. APH
	Publishing Corporation.
	2. Beer, T. (2017). Environmental Oceanography. CRC Press
	Heywood V.H. (1995) Global Biodiversity Assessment. UNEP,
	Cambridge University Press
	3. Bertness, M. D., Bruno, J. F., Silliman, B. R., & Stachowicz, J. J.
	(Eds.). (2014). Marine community ecology and conservation.
	Sinauer Associates, Incorporated.
	4. Chambers, R. C., & Trippel, E. A. (Eds.). (2012). Early life history
	and recruitment in fish populations (Vol. 21). Springer Science &
	Business Media
References/ Readings	5. Jeffrey S. Levinton, C. D., (2001). Marine Biology: Function,
	Biodiversity, Ecology. OUP, USA publication
	6. Knauss, J. A., & Garfield, N. (2016). Introduction to physical
	oceanography. Waveland Press.
	7. Kortzinger, (2004). The Ocean takes a Breath, Science
	306(5700):1337
	8. Naskar K. and Mandal R., (1999) Ecology and Biodiversity of
	Indian Mangroves. Daya Publishers
	9. Pickard, G. L., & Emery, W. J. (2016). Descriptive physical
	oceanography: an introduction. Elsevier.
	10. Trujillo A. P., and Thurman H. V., (2017) Essentials of
	Oceanography. Pearson Publisher

Course Code	MBTC-406	
Title of the course	AQUACULTURE TECHNOLOGY	
Credits	3	
Prerequisites	MBTC-401	
Course Objectives	• This course is aimed to teach sustainable use of aquatic res various approaches in biotechnology.	ources with
Learning Outcomes	On completion of this course, students should be able to:Explain fundamental principles of aquaculture biotechnology;Identify the role of aquaculture biotechnology in society.	
Content	MODULE I	
	 Importance of coastal aquaculture; Aqua farms; Design and construction; Criteria for selecting cultivable species; Culture systems and management practices – extensive, semi-intensive and intensive culture practices. Seed production in controlled condition; Types; Design and management of hatchery –induced spawning; Mass production of seeds; feed formulation; Artificial insemination - <i>in vitro</i> fertilization; Fish Feed Technology: Types of feed, conventional feed <i>vs</i> functional feeds; Principles of feed formulation and manufacturing, diets suitable for application in different aquaculture systems; feed formulation ingredients; Use of natural and synthetic carotenoids; feed additives; Role of additives; Feed processing: Gelatinization, extrusion Technology, pellet dressing with heat liable nutrients; Feed evaluation; Feeding schedule to different aquatic organisms, check tray operation and feed management, Biomass calculation based on feed intake; Post-harvest Biotechnology: Fundamental aspects of freezing, methods of freezing; Delaying of spoilage. Molecular Tools in Conservation of Fisheries Resources: Artificial Hybridization: Heterosis, Control of fish diseases by selection; selective breeding of disease resistant fish. 	15 hours

 Culture of Live food organisms: Candidate species of phytoplankton & zooplankton as live food organisms of freshwater & marine species; biology & culture requirements of live food organisms: green algae, diatoms, rotifers and brine shrimp. Male and female of finfish and shellfish; Primary and secondary sex characters; Process of Oogenesis & Spermatogenesis, metabolic changes during gametogenesis; neuroendocrine system in crustacean & molluscs & its role in control of reproduction; mechanism of hormone synthesis, release, transport & action; Pheromones & reproductive behaviour; environmental factors influencing reproduction; Advances in Fish Breeding: Hypophysation, cryopreservation technique, genetic basis of determination of sex; chromosome manipulation: ploidy induction, sex reversal; gynogenesis and androgenesis; Brood stock management; Application of cross breeding in aquaculture; Selective breeding: qualitative and quantitative traits for selection, methods of selection; Inbreeding and heterosis in various economic 	15hours
quantitative traits for selection, methods of selection;	
• Bio-floc technology; Aquaponics; Zero water exchange	
aquaculture system; Aqua mimicry; Hydroponics; Raceway system of aquaculture; Bioremediation in Aquaculture systems: Genetically modified organisms in waste water treatment; Bioremediation for soil and water quality improvement; Micro-algae- indoor and mass-culture methods, Biotechnological approaches for the production of important microalgae and other	15 hours

	commercial important products.
Pedagogy	Lectures, tutorials, assignments
References/ Reading	1. Felix,S,(2010)Handbook of Marine and Aquaculture BiotechnologyAGROBIOS INDIA.
	2. Gautam, N,C, (2007) Aquaculture Biotechnology, Shree Publishers and Distributors
	3. Krishnaveni, G., and Veeranjaneyulu, K., (2016) RECENT TECHNOLOGIES IN FISH AND FISHERIES Rigi Publications
	4. Kutty, M.N., and Pillay T.V., (2005) Aquaculture: Principles and Practices (Wiley Blackwell)
	5. Patel, A., and Pathak S.N., (2010) Textbook of Aquaculture. Pacific Book Internationals.
	6. Se-kwon Kim, (2015) Handbook of Marine Biotechnology, Springer
	 Stickney R.R., Gatlin D., (2022) Aquaculture: An Introductory Text CABI Publishing
	8. Stickney, R.R., (2000) Encyclopedia of Aquaculture Wiley InterScience

Course Code:	MBTC-407	
Title of the Course:	GENETICS AND MOLECULAR BIOLOGY	
Credits	3	
Course Objective:	The aim of this course is to obtain and understand the fundamental	
	knowledge of molecular and cellular processes such as RNA transcription,	
	protein synthesis, mutation, epigenetic modification and gene regulation.	
Learning Outcomes	The students should be able to explain and summarize the scientific	
	principles of the molecular biology of DNA, RNA and understand the role	
	played in overall functioning of the cell.	
Contents:	MODULE I	
	Mendelian Genetics and Population genetics	
	• Structure of DNA - A,B, Z and triplex DNA;	
	Organization of bacterial genome and eukaryotic	
	chromosomes Heterochromatin and Euchromatin	
	• DNA melting and buoyant density; Tm; DNA reassociation	

 MODULE II Prokaryotic and eukaryotic transcription -RNA polymerase/s and sigma factors, Transcription unit, Prokaryotic and eukaryotic promoters, Promoter recognition, Initiation, Elongation and Termination 	
 15 hourd recognition, initiation, Elongation and Termination (intrinsic, Rho and Mfd dependent) Gene regulation: Repressors, activators, positive and negative regulation, Constitutive and Inducible, small molecule regulators, operon concept: <i>lac, trp</i>operons, attenuation, anti-termination, stringent control, translational control. Eukaryotic transcription - RNA polymerase I, II and III mediated, General eukaryotic transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); assembly of pre-initiation complex for nuclear enzymes, interaction of transcription factors with the basal transcription machinery and with other regulatory proteins, mediator, TAFs. ; Silencers, insulators, enhancers, mechanism of silencing and activation. MODULE III Translation in prokaryotes and eukaryotes, Regulatory RNA and RNA interference mechanisms, miRNA, non-coding RNA; 	s

		1
	• Families of DNA binding transcription factors: Helix-turn-	
	helix, helix-loop-helix, homeodomain; 2C 2H zinc finger,	
	multi cysteine zinc finger, basic DNA binding domains	
	(leucine zipper, helix-loop-helix), nuclear receptors.	
	• Interaction of regulatory transcription factors with DNA:	
	properties and mechanism of activation and repression	
	including Ligand-mediated transcription regulation by	
	nuclear receptors.	
	• DNA replication.	
	• DNA recombination.	151
		15 hours
Pedagogy References/Reading	Lectures/tutorials/assignments	
References/Reading	1. Clark D.P. Pazdernik, N.J., McGehee, M.R. (2019)	7) Lervin's
	2. Goldstein E.S., Stephen T. Kilpatrick J Krebs J. (201	() Lewins
	GENES XII. Bartlett Publishers	
	3. Karp G., Iwasa J., Marshall W., (2016) Karp's Cell and	
	Biology: Concepts and Experiments, (8 ed) Wiley Publish	
	4. Klug, W., Cummings, M, Spencer.C . (2019) Concepts	of Genetics
	(12ed). Pearson publishers	
	5. Lodish H.F; Berk A ; Kaiser C ; Krieger M ; Bretscher	A . (2016).
	Molecular Cell Biology (8 ed) Freeman MacMillan publis	sher
	6. Russell P.J, iGenetics: A Molecular Approach. (2010	6) (3 ed)
	Pearson publisher.	
	7. Simmons M. J., Snustad P. (2015). Principles of Gene	tics (7 ed).
	Wiley Student Edition.	
	8. Strickberger, M. (2015) Genetics, (3 ed) by Pearson publ	ishers
	9. Watson J.D, Baker T.A, Bell S.P, Gann A, Levine M &	& Losick R
	(2014) Molecular Biology of the Gene, Cold Spri	ng Harbor
	Laboratory Press, New York	
	10. Weaver R.F (2012) Molecular Biology (5th ed) McGraw	Hill Higher
	Education publisher.	-

Course Code:	MBPC-407
Title of the Course	LAB IV: GENETICS AND MOLECULAR BIOLOGY
Credits	2
Prerequisite	MBTC-407

Objective:	• The objective of this course is to provide students with	experimental
	knowledge of molecular biology and genetic engineering.	
Learning Outcomes	• Students should be able to gain hands-on experience on gene c	loning,
	protein expression and purification. This experience would ena	ble them to
	begin a career in industry.	
Contents:	1. UV/Chemical mutagenesis and survival curve.	
	2. Isolation of amino acid auxotroph by replica plating.	
	3. Phage infection and burst size; types of plaque	
	formation	
	4. Transduction	30 hrs
	5. Genetic Transfer-Conjugation, gene mapping.	
	6. Genomic DNA isolation	
	7. DNA quantification and gel electrophoresis	
	8. RNA isolation	
	9. RNA denaturing gel electrophoresis.	
	10. Mitosis.	30 hrs
	11. Meiosis	
Pedagogy	Hands-on experiments in the laboratory, video, online data	
References/Readings	1. Gakhar S.K., Miglani M., Kumar A., (2019) Molecular	Biology: A
1.010101000,1.000000085	Laboratory Manual. Rupa Publications.	210108,111
	 Green R. , Sambrook J. (2012) Molecular Cloning: A 	Laboratory
	Manual (Fourth Edition): Three-volume set	Laboratory
	 Hofmann A. (2018) Wilson and Walkers Principles And 	Tachniques
		-
	Of Biochemistry And Molecular Biology. Cambridge	University
	Press	
	4. Laboratory Manual for GENETIC ENGINEERING	1st Edition
	(2009) S. JOHN Vennison PHI Learning	
	5. Sharma R.K., Sangha S.P.S (2020) Basic Tec	hniques in
	Biochemistry and Molecular Biology Dream Tech Press.	

	MBTC-408	
Title of the course	CELL AND DEVELOPMENTAL BIOLOGY	
Credits	3	
Course Objectives	The cells being "the fundamental building blocks of all comprehensive understanding of the cell and cellular function is biologists. This course will hence provide a conceptual overvi- system and its functioning in animals and plants. The course will conceptual overview of how developmental patterns arise. Using different model systems regulatory networks involved are highli project the molecular basis of developmental patterns.	essential for all ew of a cellular also highlight a g examples from
Learning Outcomes	Understanding major concepts in cell and Developmental b awareness of experimental approaches and how they are applied research.	
Contents:	 MODULE I Biochemical organization of the cell; diversity of cell size and shape; cell theory, and the emergence of modern Cell Biology. Principles underlying microscopic techniques for the study of cells. Structure and diversity of biological membranes; mechanisms of membrane transport. Self-assembly of lipids, micelle, bio membrane organization - sidedness and function; membrane assembly. The plant cell wall; extracellular matrix in plants and animals Cell lysis and subcellular fractionation Structural organization and functions of cell organelles: nucleus, mitochondria, Golgi bodies, endoplasmic reticulum, 	15 hours

	MODULE II	
	 Protein localization – synthesis of secretory and membrane proteins, import into nucleus, mitochondria, chloroplast, and peroxisomes, receptor-mediated endocytosis. Proteasomes; structure and function Cell division and cell cycle: Mitosis and meiosis, their regulation, Cell cycle, and its regulation, Apoptosis, Necrosis, and Autophagy. Cell signaling Cell fusion techniques Molecular chaperones: types, characteristics, and functional significance Cell transformation and cancer, oncogenes and proto- 	15 hours
-	 oncogenes, tumor suppressor genes, metastasis. <u>MODULE III</u> Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and 	
	 transgenics in analysis of development. Production of gametes, cell surface molecules in sperm-egg recognition in animals; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation, and formation of germ layers in marine animals. Cell aggregation and differentiation in <i>Dictyostelium</i>; axes and pattern formation in <i>Drosophila</i>, amphibia; organogenesis – vulva formation in <i>Caenorhabditis elegans</i>, eye lens induction, limb development and regeneration in vertebrates; differentiation of neurons, post-embryonic development- larval formation, metamorphosis; environmental regulation of normal development; sex 	15 hours
	determination.	
Pedagogy References/ Reading	Lectures/tutorials/assignments 1. Amon, A., Krieger, M., Lodish, H., Bretscher, A., Kaiser, C. A.	A., Berk, A.

Martin, K. C., Ploegh, H. (2016). Molecular Cell Biology. United Kingdom: W.
H. Freeman.
2. Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J, Johnson, G.
(2016). Cell biology E-book. Elsevier Health Sciences.
3. Karp, G., Iwasa, J., Marshall, W. (2018). Cell Biology Global Edition. United
States: Wiley.
4. J.D. Watson, M., Levine, T. A. Baker, A. Gann, S. P. Bell, R.L. Watson (2014)
Molecular Biology of the Gene, Pearson Education.
5. Turner, B. M. (2008). Chromatin and gene regulation:
molecular mechanisms in epigenetics. John Wiley & amp; Sons.
6. Kilpatrick, S. T., Krebs, J. E., Goldstein, E. S. (2017). Lewin GENES
XII. Japan: Jones; Bartlett Learning.
7. Gilbert, S. F. (2010). Developmental biology. Sinauer Associates, Inc.
8. Subramanian, M. A. (2022). Developmental Biology. India: MJP Publisher.
9. Cooper, G. M., Hausman, R. E. (2013). The Cell: A
Molecular Approach. United States: Sinauer Associates.
10. C. Smith & amp; E. Wood (2005) Cell Biology, Chapman Hall .
11. Wolpert, L. (2011). Developmental Biology: A Very Short Introduction. OUP
Oxford.
12. Slack, J. M. W. (2009). Essential Developmental Biology. Germany: Wiley.
13. Lodish et al., (2000) Molecular Cell Biology, W.H.Freeman & Company
14. Smith & Wood (2005) Cell Biology, Chapman & Hall London

Course Code	MBPC-409
Title of the Course	LAB V: PLANT AND ANIMAL TISSUE CULTURE
Credits	2
Objective:	• A comprehensive understanding of the cell and cellular functions; plant and animal tissue culture.
Learning Outcomes	• To carry out and interpret experiments in Plant and animal tissue culture.

Contenta	1. Preparation of starting material (Biosafety cabinet,	I
Contents:		
	solutions, media, cell sample etc.):	
	2. Cell stock preparation (glycerol stock), storage,	
	freezing, thaw and subculture,	
	3. contamination and precautions	
	4. Animal cell culture: Secondary cell culture HeLa and	30 hours
	non-cancerous cell like	
	5. HEK293, COS-7	
	6. Transfection and co-transfection: Calcium-phosphate	
	method and Lipofection	
	7. Cell fixation and staining: Immunolabeling, mounting,	
	fluorescence imaging	
	1. Tissue culture medium preparation, contamination and	
	precautions in plant tissue culture	
	2. Callus induction from different explants such as rice	
	and carrot	
	3. Plantlet regeneration.	
	4. Somatic embryogenesis	
	5. Single cell suspension.	
	6. Protoplast isolation	
		30 hrs
Pedagogy	Hands-on experiments in the laboratory, video, online data	
References/Readings	1. Freshney I.R. and Capes-Davis A., (2021) Freshney's	Culture of
	Animal Cells: A Manual of Basic Technique and	Specialized
	Applications. Wiley Blackwell Publisher	
	2. Freshney R.I and Masters. J.R.W. (2000) Animal cell culture	ure (2000) -
	A Practical Approach Oxford University Press	
	3. Sherathiya, H., (2013) Practical manual for Plant Tissue Cu	ulture: Basic
	Techniques of Plant Tissue Culture and Molecular Bi	ology. Grin
	Verlag	
	4. Smith R. (2012) Plant tissue culture Techniques and	experiment.
	Academic Press.	
	1	

Course Code	MBTE-405	
Title of the Course	BIOINFORMATICS	
Credit	2	
Prerequisite	MBTC-407	
Objective:	The objectives of this course are to provide students with practical experience of the use of common computational tools ar which facilitates the investigation of molecular biology and evolu concepts	nd databases
Learning Outcomes	 Students should be able to: develop an understanding of the basic theory of these computati gain working knowledge of these computational tools and method appreciate their relevance for investigating specific combiological questions 	ods.
Contents:	MODULE I	
	• Introduction, Primary & Secondary database, Sequence file formats, Introduction to structures, Protein Data Bank (PDb), Molecular Modelling Database (MMDb), Structure file formats, Collection of sequences, sequence annotation, sequence description.	
	• Evolutionary basis of sequence alignment, optimal alignment methods, Substitution scores & gap penalties, Statistical significance of alignments,	
	• Database similarity searching, FASTA, BLAST, Low complexity regions, Repetitive elements, Multiple Sequence Alignment: Progressive alignment methods, Motifs and patterns, Clustal, Muscle; Scoring matrices, Distance matrices.	
	• Alignment, tree building and tree evaluation, Comparison and application of Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbour Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood (ML) methods, Bootstrapping, Jackknife;	15 hours
	• Software for Phylogenetic analysis. DNA barcoding: Methods tools and databases for barcoding across all species, Applications and limitations of barcoding, Consortium for Barcode of Life (CBOL) recommendations, Barcode of Life Database (BOLD).	
	MODULE II	
	• 3-D structure visualization and simulation, Basic concepts in molecular modeling: different types of computer representations of molecules; External coordinates and Internal Coordinates, Molecular Mechanics, Force fields <i>etc.</i> Secondary structure elucidation using Peptide bond, phi, psi	

	 and chi torsion angles, Ramachandran map, anatomy of proteins – Hierarchical organization of protein structure –like CATH (class, architecture, topology, homology), SCOP (Structural Classification of Proteins), FSSP (families of structurally similar proteins). Fundamentals of the methods for 3D structure prediction (sequence similarity/identity of target proteins of known
	structure, fundamental principles of protein folding <i>etc.</i>) Homology/comparative modeling, fold recognition, threading approaches, and ab initio structure prediction methods; CASP (Critical Assessment of protein Structure Prediction); Computational design of promoters, proteins & enzymes.
	 Chemical databases like NCI/PUBCHEM; Fundamentals of Receptor-ligand interactions; Structure-based drug design: Identification and Analysis of Binding sites and virtual screening; Ligand based drug design: Structure Activity Relationship– QSARs & Pharmacophore; <i>In silico</i> predictions of drug activity and ADMET.
	• Designing of oligo probes; Image processing and normalization; Microarray data variability (measurement ad quantification); Analysis of differentially expressed genes; Experimental designs.
Pedagogy	Lectures, tutorials, assignments
References/Readings	1. Arthur L (2019) Introduction to Bioinformatics. Oxford University Press.
	 Baxevanis A. D., Bader,G.D., Wishart D.S. (2020) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins Wiley Publisher.
	3. Bioinformatics databases and algorithms (2007) N. Gautham.
	4. Bioinformatics: A modern approach . (2005) V.R. Srinivas.
	 Bioinformatics:concepts skills and applications (2004).S.C. Rastogi, N. Mendiratta and P. Rastogi.
	6. Essential Bioinformatics Paperback – 2007 by Jin Xiong Cambridge
	University Press; First edition.7. Ignacimuthus. S. (2013) Basic Bioinformatics Alpha Science International Ltd

8.	Jonathan Pevsner (2015) Bioinformatics and Functional Genomics.
	Wiley Blackwell Publication.
9.	Perambur S Neelakanta (2020) A Textbook of Bioinformatics:
	Information-theoretic Perspectives of Bioengineering and Biological
	Complexes World Scientific Publisher.
10.	Statistical methods in Bioinformatics: An introduction. (2005). W.
	Even and G. Grant.
11.	Xiong J. (2006). Essential Bioinformatics. Cambridge University
	Press

Course Code	MBPE- 405	
Title of the Course	LAB VI: BIOINFORMATICS	
Credits	2	
Objective:	• The aim is to provide practical training in bioinformatics and	
	statistical methods including accessing major public sequence	
	databases.	
Learning Outcomes	On completion of this course, students should be able to:	
	• describe contents and properties of important bioinformatics databases,	
	perform text- and sequence-based searches, analyse and discuss results in the	
	light of molecular biology knowledge;	
	• explain major steps in pairwise and multiple sequence alignment, explain its	
	principles and execute pairwise sequence alignment by dynamic programming;	
	 predict secondary and tertiary structures of protein sequences; 	
	• perform and analyze various statistical tools available to analyze the data.	
Prerequisite	MBE 417	
Contents:		
	1. Using NCBI and Uniprot web resources.	

	2. Introduction and use of various genome databases.						
	3. Sequence information resource: Using NCBI, EMBL,						
	Genbank, Entrez, Swissprot/						
	TrEMBL, UniProt.						
	interpretation of results.						
	5. Multiple sequence alignment using ClustalW.						
	6. Phylogenetic analysis of protein and nucleotide sequences.						
	7. Use of gene prediction methods						
	(GRAIL/Genscan,/Glimmer).						
	8. Use of various primer designing and restriction site						
	prediction tools.						
	9. Use of different protein structure prediction databases (PDB,						
	SCOP, CATH).						
	10. Construction and study of protein structures using						
	RASMOL/Deepview/PyMol.						
	11. Homology modelling of proteins.30						
	12. Whole-genome assembly from NGS raw data sequence						
	13. 16sRNA sequence analysis and use of Bioedit						
	14. Molecular docking						
Pedagogy	Hands-on experiments in the laboratory, video, online data						
References/Readings	1. Baxevanis A. D., Bader, G.D., Wishart D.S. (2020) Bioinf	ormatics: A					
	Practical Guide to the Analysis of Genes and Proteins Wiley	Publisher.					
	2. Even W., and Grant G., (2005) Statistical methods in Bioinfo	ormatics: An					
	introduction. (2005).						
	3. Jones, N.C., and Pevzner, P.A., (2004); Introduction to Bioinformatic						
	Algorithms; Ane Books, India.						
	4. Mount D.W., (2001), Bioinformatics: Sequence and Genome Analys						
	Cold Spring Harbor Laboratory Press.						
	5. Shui Qing S., (2007) Bioinformatics: A Practical Approach (Chapm						
	& Hall/CRC Mathematical and Computational Biology)						

Course code	MBTE-406

Title of the course	NANOBIOTECHNOLOGY						
Credits	2						
Objective:	• Providing a general and broad introduction to the multi-disciplinary field of nanotechnology.						
Learning Outcomes	• Students should be able to describe the basic science behind the properties of materials at a nanometre scale.						
Contents:	MODULE I						
	• Introduction, concepts, historical perspective;						
	• Different formats of nanomaterials and applications with						
	examples for specific cases; Cellular Nanostructures;						
	Nanopores; Biomolecular motors; Bio-inspired						
	Nanostructures, Synthesis, and characterization of different						
	nanomaterials.						
	• Thin films; Colloidal nanostructures; Self-assembly, 15 hours						
	Nanovesicles; Nanospheres; Nanocapsules and their						
	characterization.						
	• Nanoparticles for drug delivery, concepts, optimization of						
	nanoparticle properties for suitability of administration						
	through various routes of delivery, advantages,						
	• Strategies for cellular internalization and long circulation,						
	strategies for enhanced permeation through various						
	anatomical barriers.						

	MODULE II						
	 Nanoparticles for diagnostics and imaging (theranostics); concepts of smart stimuli-responsive nanoparticles, implications in cancer therapy, nanodevices for biosensor development. Nanomaterials for catalysis, development, and characterization of nanobiocatalysts, Application of nano scaffolds in synthesis, applications of nanobiocatalysis in the production of drugs and drug intermediates. Introduction to Safety of nanomaterials, Basics of nanotoxicity, Models and assays for Nanotoxicity assessment; Fate of nanomaterials in different strata of the environment; Ecotoxicity models and assays; Life cycle assessment, containment. 	urs					
Pedagogy:	Lectures/ tutorials/assignments						
References/Readings	 Chittaranjan K., Kumar, D. S., Khodakovskaya, M. V (2016) Plant Nanotechnology Principles and Practices. Springer GeroDecher, J., Schlenoff. B., (2003); Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley-VCH Verlag 						
	 Goodsell D. S., (2004); Bionanotechnology: Lessons from Na Wiley-Liss 						
	4. Grey T. H., (2013); Bioconjugate Techniques, Elsevier						
	5. Kuno, M., (2012) Introductory Nanoscience, Physical and Chem Concepts. Garland Science						
	6. Malsch, N.H. (2005). Biomedical Nanotechnology, CRC Press						
	Amsterdam.	evier					
	8. Sanmugam, S., (2011). Nanotechnology. MJP publisher						

Course Code	MBTE-407
Title	VACCINE TECHNOLOGY
Credits	2
Prerequisite	MBTC-402
Objectives	• To understand the conventional to the latest technology in vaccine production.

	• To understand the immunological effect and strategies for vaccin design.				
Learning outcomes	• Understanding of vaccine design and strategies for vaccin				
	delivery.				
	• Understand the significance of adjuvant, immunogens, and other				
	ingredients for developing an effective vaccine				
	Module I				
Contents	• Protective immune response in bacterial; viral				
	and parasitic infections; Primary and Secondary				
	immune responses during infection; Antigen				
	presentation and Role of Antigen-presenting				
	cells: Dendritic cells in immune response;				
	• Innate immune response; Humoral (antibody-				
	mediated) responses; Cell-mediated responses:				
	role of CD4+ and CD8+ T cells;				
	 Memory responses: Memory and effector T and 				
	B cells, Generation and Maintenance of memory				
	T and B cells Correlates of protection.				
	 Epitopes, linear and conformational epitopes, 				
	characterization and location of APC, MHC, and				
	immunogenicity				
	History of vaccines, Conventional vaccines;				
	Vaccination and immune response;				
	Different types of Vaccines: Inactivated Vaccine,				
	Attenuated Vaccine, Toxoid Vaccine, Subunit				
	Vaccine, Conjugate Vaccine, Valence Vaccine,				
	Heterotypic Vaccine, mRNA vaccine with				
	examples				
	• Vaccines based on routes of administration: oral,				
	intranasal, intramuscular. Subcutaneous,				
	intravenous. Case examples of injectable				
	vaccines, and combination vaccines.				
	• Physical method of gene delivery: tattooing, gene				
	gun, electroporation, ultrasound, and laser				
	Maternal Immunization				
	Module II				

			I				
	•	Vaccines with and without adjuvants. different					
		types of adjuvants:oil-based adjuvants such as					
		Freunds, aluminum hydroxide, aluminum					
		phosphate, [AS04] aluminum potassium sulfate					
		monophosphoryl lipid A (MPL) + aluminum salt,					
		[MF59] Oil in water emulsion composed of					
		squalene. [AS01] Monophosphoryl lipid A					
		(MPL) and QS-21, a natural compound extracted	15 hours				
		from the Chilean soapbark tree, combined in a	15 110015				
		liposomal formulation, [cpG1018]Cytosine					
		phosphoguanine (CpG), a synthetic form of DNA					
		that mimics bacterial and viral genetic material.					
	•	Vaccine delivery systems (e.g., emulsion (water-					
		in-oil-in-water multiple emulsions,					
		microemulsions, or nanoemulsions)					
		microparticles, immune-stimulating complexes					
		ISCOMs, liposomes, nanoparticles, dendrimer					
		* *					
		and micellar) with examples such as PLGA,					
		Chitosans, polyphosphazene, polyanyhydrides,					
		polymethacrylic acid, liposomes, and their					
		derivatives, virosomes, polymeric nanoparticle					
		delivery system,					
	•	New emerging diseases and vaccine needs					
		(Ebola, Zika).					
	•	Quality control and regulations in vaccine					
		research					
Pedagogy		Lectures/tutorials/assignments	1.0.1				
References/Reading	1)	Cheryl Barton, "Advances in Vaccine Technology	and Delivery",				
		Espicom Business Intelligence, 2009.					
	2)	Ellis R.W.,(2001) "New Vaccine Technolo	gies", Landes				
		Bioscience.					
	3)) Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J.					
		(2005). Immuno Biology: the Immune System in Health and					
		Disease. USA: Garland Science Pub.					
	4)	4) Kaufmann, S. H. (2004). Novel Vaccination Strategies.					
		Weinheim: Wiley-VCH.					

5)	Kaufmann,	S.	H.	(2004).	Novel	Vaccination	Strategies.
	Weinheim: Wiley-VCH. Kindt, T. J., Osborne, B. A., Goldsby, R. A., & Kuby, J. (2013).						
6)							
	Kuby Immunology. New York: W.H. Freeman.						
7)	7) Male, David, et al., (2007) "Immunology", Mosby Publication				olication.		