MINUTES OF THE ONLINE MEETING OF BOARD of STUDIES IN BIOCHEMISTRY

(Recorded on 14th June 2021 in the School of Chemical Sciences)

Following members were present:

1.	Prof. V.S. Nadkarni	Dean, SCS and Chairperson
2.	Dr Kanchanmala Bharat Deshpande	- Member
3.	Dr Delicia Avilla Barretto	- Member
4.	Dr. Dibakar Chakrabarty	- Member
5.	Dr. Ida Mukherjee	- Member
6.	Dr. Priya Mallika D'Costa	- Member
7.	Prof. Sandeep Garg	- Member
8.	Dr. Rakhee Sinai Khandeparker	- Member

Agenda:

Agenda 1. To discuss the revision of Sem-I/II syllabus of M Sc Biochemistry programme.

PART A:

- i) Recommendation regarding courses of study in the subject or group of subjects at the Undergraduate level:
- ii) Recommendation regarding courses of study in the subject or group of subjects at the postgraduate level: (Annexure-A may please be seen)

PART B:

i) Scheme of Examinations at undergraduate level:	NIL
ii) Panel of examiners for different examinations at the undergraduate level:	NIL
iii) Scheme of Examinations at undergraduate level:	NIL
iv) Panel of examiners for different examinations at the post-graduate level:	NIL

PART C: (i) Recommendations regarding preparation and publication of selection of reading material in any subject or group of subject or group of subjects and names of persons recommended for appointment to make the selection.-

PART D: i) Recommendation regarding general academic requirements in the Departments of university or affiliated college: NIL

ii) Recommendation of Academic Audit Committee and Status thereof: NIL

PART E: (i) Recommendations of text-books for the courses of study at the Under-

Graduate level.

(ii) Recommendations of text books for the courses of study at the Post-

Graduate level. NIL

PART F: Important points for consideration / approval of Academic council

- i. PART -A (ii)
- ii. The declaration by the Chairman

Hereby, it is declared that the minutes were read out by the chairman at the meeting itself.

Prof. V. S. Nadkarni Chairman, BOS in Biochemistry

PART G: The remarks of the Dean of the Faculty

- i. The minutes are in order
- ii. The following important points / recommendations of BoS may be considered / approved by the Academic council.

Attention of the Academic Council is drawn to item Nos. PART -A (ii)

- iii. May be recommended for approval of the Academic council.
- iv. Special remarks if any-Nil

Date: 17/06/2021 **Prof. V. S. Nadkarni**

Place: Taleigao Plateau **Dean, SCS**

Annexure-A

MINUTES OF THE ONLINE MEETING OF BOARD of STUDIES IN BIOCHEMISTRY

(Recorded on 14th June 2021 in the School of Chemical Sciences)

Following members were present:

1.	Prof. V.S. Nadkarni	Dean, SCS and Chairperson
2.	Dr Kanchanmala Bharat Deshpande	- Member
3.	Dr Delicia Avilla Barretto	- Member
4.	Dr. Dibakar Chakrabarty	- Member
5.	Dr. Ida Mukherjee	- Member
6.	Dr. Priya Mallika D'Costa	- Member
7.	Prof. Sandeep Garg	- Member
8.	Dr. Rakhee Sinai Khandeparker	- Member

Chairman welcomed the members to the first meeting (online) of the regular Board of Studies in Biochemistry (PG). The Chairman said that he had already sent a detailed agenda giving necessary background information to the members. Following agenda items were taken up for the discussion.

Agenda 1. To discuss the revision of Sem-I/II syllabus of M Sc Biochemistry programme.

The Chairman informed the members that the existing syllabus of the Biochemistry program was prepared by the ad hoc BoS when the program was started in 2014-15. The Biochemistry program has become a part of SCS since June 2020. Seven permanent teaching positions have been sanctioned for the program and four faculty members have already joined since AY 2020-21.

As almost six years are over after the first syllabus was made, it is high time that the syllabus is revised taking into account the career of the students. Thus, SCS is willing to ensure that our Biochemistry students perform well in competitive examinations like SET/ NET as well as equipped with better skills as are being envisaged in the NEP.

As per the prevailing procedures, the draft was prepared by the four faculty members and was discussed and approved by the School Council of SCS. Chairman requested the members to provide their suggestions for further improvement of the draft. He said that the SCS will apply this syllabus after it is approved by both BoS and AC to the batch that will join for the AY 2021-22.

The Chairman said that the faculty members are also working on the draft for Semesters II and IV (Part-II) and the same will be placed before this BoS in its next meeting. The BoS approved the outline of Part-II syllabus that was presented.

Members suggested that the theory paper in cell Biology should be listed as optional paper while that in Bioenergetics and Metabolism should be listed as core paper. After due deliberations and incorporating the other suggestions made by the Hon'ble Members, the BoS unanimously resolved to approve the draft and recommend the same to the Academic Council of the University for its

approval so that the same could be made applicable w.e.f. AY 2021-22. The same is Attached to these minutes as Annexure-I (General information) and Annexure-II (Draft Syllabus).

2. Any Other Business with the permission of Chair: Nothing else was requested under the AOB.

The meeting ended with thanks to the Members.

Prof. V S Nadkarni, **Chairperson BoS**

M.Sc. Biochemistry revised syllabus with effect from A.Y. 2021-2022

Core Papers			
Sl.	Subject	Paper title	Credits
No.	code		
1.	BCC 101	Fundamentals of Biomolecules [T]	3
2.	BCC 103	Analytical Biochemistry-I [T]	3
3.	BCC 106	Bioenergetics and metabolism [T]	3
4.	BCC 107	Molecular Biology [T]	3
5.	BCC 108	Laboratory course in Biochemistry-I	4
		a. Fundamentals of Biomolecules [P]	
		b. Analytical Biochemistry-1 [P]	
		c. Molecular Biology [P]	
		d. Field trip/study tour [P]	
		Optional Papers	
1.	BCO 110	Immunology and Immunotechniques [T]	3
2.	BCO 111	Biochemistry of Environmental Pollution and Remediation	3
		[T]	
3.	BCO 124	Cell biology [T]	3
4.	BCO 125	Analytical Biochemistry-II	3
5.	BCO 126	Laboratory techniques and Applications of Biochemistry	4
		a. Cell biology [P]	
		b. Immunology and Immunotechniques [P]	
		c. Analytical Biochemistry-II [P]	
		d. Biochemistry of Environmental Pollution and	
		Remediation [P]	

PART -I CORE PAPERS

Programme: M. Sc. (Biochemistry) Course Code: BCC 101

Title of the Course: Fundamentals of Biomolecules [T]

Prerequisites	Students should have basic knowledge of organic and biomolecules	
for the	and some of the functional groups and stereochemistry.	
course:		
Course	1. To develop concepts about structures and functions of different	
Objectives:	biomolecules.	
	2. To understand the reactivity of biomolecules and their role in	
	metabolic pathways.	
Course	Students will acquire insights into the structure and functions of	
Outcomes:	various biomolecules and their 3-dimensional arrangements.	
	Students will be able to understand the reactivity of biomolecules	
	which will help them in better understanding of the metabolic	
	pathways.	
Content:	1. Introduction: Origin, aim and scope of Biochemistry	3 h
	Properties of water: Structure and properties of water,	
	importance of water in biological systems, Ionic product of	
	water.	
	2. Chemical bonding, Stereochemistry and Reactions:	6 h
	Properties of covalent bond, non-covalent bonds and their	
	importance in biological systems. Brief revision of	
	configurational nomenclature: R & S; D & L; E & Z; cis &	
	trans and syn & anti nomenclature with respect to	
	biomolecules. Types of biochemical reactions: oxidation-	
	reduction, condensation, rearrangement, cleavage, group-	
	transfer, Resonance bond, electrophilic and nucleophilic	
	substitution reactions.	
	3. Amino acids and Protein:	7 h
	Amino acids: Structure, Classification, and physico-chemical	
	properties of amino acids, role of non-protein amino acids,	

	learning/ self-study.	
Pedagogy:	Lectures/ tutorials/ assignments/ students' seminars/ interactive	
	soluble vitamins.	3 h
	7. Vitamins: Structure and Classification, water soluble and fat	
	Formation of micelles, monolayers, bilayer, liposomes.	
	steroids, prostaglandins and bile acids, rancidity.	
	glycolipids, Lipoproteins, chylomicrons, LDL, HDL and VLDL,	
	subclasses-Triacylglycerols, Phospholipids, Sphingolipids,	6 h
	6. Lipids : Classification, structure and function of major lipid	
	glycoproteins.	
	and complex carbohydrates; amino sugars, proteoglycans and	
	functions of monosaccharides, disaccharides polysaccharides	6 h
	5. Carbohydrates: Structure, stereochemistry, reactions and	
	features of nucleic acids (DNA & RNA) and their biological functions.	
	pyrimidine (Cytosine, Thiamine, Uracil) bases. Structural	
	nucleotides, nucleosides, purine (Adenine, Guanine) and	5 h
	4. Nucleotides and Nucleic acids: Structure and properties of	. .
	d. Quaternary structure – Haemoglobin.	
	c. Tertiary Structure: Forces stabilizing, unfolding/ refolding	
	secondary structure.	
	b. Secondary structure: alpha-helix, β - structure, β -helix, super	
	structure.	
	a. Primary Structure: Peptide bond, importance of primary	
	functions	
	Proteins: Structural features of proteins and their biological	
	peptides, peptides of physiological significance, peptide bond.	

Text Books/	1. Nelson, D. L.; Cox, M. M.; Lehninger Principles of
References /	Biochemistry, W.H.Freeman; 2017, 7 th Edition.
Readings	2. Voet, D.; Voet, J. G.; Pratt, C. W.; Fundamentals of
	Biochemistry, John Wiley & Sons Inc., 2016, 5 th Edition.
	3. Berg, J. M.; Stryer, L.; Tymoczko, J. L.; Gatto, G. J.;
	Biochemistry; W.H Freeman; 2019, 9 th Edition
	4. Kuchel, P.; Easterbrook-Smith, S.; Gysbers, V.; Guss, J. M.;
	Hancock, D.; Johnston, J.; Jones, A.; Matthews, J.; Schaum's
	Outline of Biochemistry, McGraw-Hill Book Co., 2009, 3 rd
	Edition.

Title of the Course: Analytical Biochemistry-I

<u>Prerequisites</u>	Students should have studied the theory/ instrumentation and	
for the	application of some of the basic analytical techniques. It is assumed	
course:	that students have a basic knowledge of fundamentals in	
	biochemistry.	
Course	1. Introduction of various bioanalytical techniques for analysis.	
Objectives:	2. Evaluate the utility of various analytical techniques as a qualitative and quantitative tool.	
	3. This course develops concepts in techniques used for routine	
	biochemical work such as chromatography, centrifugation, electrophoresis.	
Course	1. Students should be in a position to differentiate between various	
Outcomes:	analytical techniques based on their theory and sensitivity achieved.	
	2. Explain the principles of various techniques and apply the knowledge of the techniques for designing various experiments in research and development.	

Content: 1. Acid, bases and buffers: concept of pH, eh, acid-base 6 h buffers, buffering capacity, mechanism of associations, dissociation of macromolecules, dissociation constants, pKa, pi, solvents (eluotropic series), peroxide values, solubility and affinity constants. 2. Centrifugation: Principle of centrifugation, concepts of RCF, 5 h different types of instruments and rotors, preparative, differential centrifugation, and density gradient analytical centrifugation, determination of molecular weights and other applications, subcellular fractionation. 3. **Electrophoretic techniques:** Principles of electrophoretic 8 h separation. Types of electrophoresis including paper, cellulose, acetate/nitrate and gel. Slab gel, tube, Continuous and discontinuous. Gel electrophoresis - types of gel, Agarose GE, Polyacrylamide gel electrophoresis PAGE, SDS- PAGE, Isoelectric Focusing and ampholytes, 2-D, native, gradient gels, PFGE, DGGE, TGGE. Capillary electrophoresis-instrumentation, sample introduction in CE, types of CE methodology, electrophoretic mobility and electroosmatic mobility, total mobility, efficiency and resolution in CE column. Separation of neutral molecule by MEKC. Staining strategies and procedures: Coomassie Brilliant blue R/G 250, Silver, Fluorescent stains Flamingo, Oriole, SYPRO-Ruby; Stain-free gels. 4. Separation techniques: Solvent extraction: Basic principle, types of extractions and 7 h application. Separations based on a partitioning between phases based on chemical nature and polarity of analyte. Dialysis: Principles, and applications of equilibrium dialysis and ultrafiltration. Artificial membranes. semi-permeable

membranes, Donnan membrane equilibrium, and biological

	significance of osmosis and micelles.	
	5. Chromatographic techniques: Basic principles and application	10h
	of thin-layer, paper chromatography, column chromatography,	
	HPLC, GC, separation matrixes - Ion-exchange, Affinity,	
	Molecular exclusion and Adsorbtion (hydrophobic interaction	
	chromatography, DNA cellulose chromatography, MAK	
	hydroxyl-apatite chromatography). Concept of mobile phases;	
	gradient elution (concave, convex and linear) and stationary	
	phases	
Pedagogy:	Lectures (online or physical)/ tutorials/ seminars/ term	
	papers/assignments/ presentations/ self-study or a combination of	
	some of these. Sessions shall be interactive in nature to enable peer	
	group learning.	
Text Books/	1. Wilson K, Walker J; Principles and Techniques of Practical	
References /	Biochemistry; Cambridge University Press; 2010, 7th Edition	
Readings	2. Christian G. D., Dasgupta P. K , Schug K. A; Analytical	
	Chemistry; John Wiley & Sons; 2013, 7th Edition	
	3. Norris J. R., Ribbons D.W.; In Methods in Microbiology;	
	Academic Press; 1971,1st Edition.	
	4. Parakhia M. V., Tomar, R. S., Patel S., Golakiya B. A.:	
	Molecular Biology and Biotechnology: Microbial Methods; New	
	India, 2010.	
	5. Homes D. J., Peck H; Analytical Biochemistry; Pearson	
	education Limited; 1998.	
	6. Douglas A. Skoog, F. James Holler, Stanley R. Crouch,	
	Principles of Instrumental Analysis; Cengage Learning. 2016, 7 th	
	Edition.	

Title of the Course: Bioenergetics and Metabolism [T]

<u>Prerequisites</u>	Students should have basic knowledge of biomolecules.	
for the course:		
Course	To understand the metabolism of biomolecules and their	
Objectives:	regulation in living cells.	
Course	Students will be able to understand the pathways associated with	
Outcomes:	the degradation and biosynthesis of major macromolecules in	
	living beings.	
Content:	1. Bioenergetics	4 h
	Thermodynamics: laws of thermodynamics, mechanism of	
	exergonic and endergonic reactions, redox potential, high	
	energy compounds, ATP structure and significance.	
	2. Oxidative Phosphorylation	2 h
	Redox enzymes, aerobic electron transport and oxidative	
	phosphorylation, ATP synthase and mechanism.	
	3. Carbohydrate metabolism	10 h
	Regulatory mechanisms, bioenergetics and significance of	
	central pathways of carbohydrate metabolism –	
	Glycolysis	
	Citric acid cycle, Gluconeogenesis from TCA intermediates /	
	amino acids / acetyl-CoA.	
	Pentose phosphate pathway, glyoxalate cycle, glucuronic acid	
	pathway,	
	Utilization of sugars such as lactose, galactose, maltose and of	
	polysaccharides such as starch, glycogen.	
	Biosynthesis of polysaccharides and sugar interconversions.	
	4. Lipid metabolism Oxidation of fatty acids and its energetics:	
	oxidation of saturated and unsaturated (mono and poly	8 h
	unsaturated fatty acids (PUFA),	
	Peroxisomal oxidation of fatty acids (Phytanic acid),	
	Refsum's disease, ketone body formation and their clinical	

	significance, diabetic keto acidosis, Biosynthesis of fatty	
	acids and regulation, Biosynthesis of triglycerides, cholesterol	
	and phospholipids.	
	5. Nucleotides and Nucleic Acids	
	Purine and pyrimidine nucleotides: biosynthesis and its	
	regulation.	5 h
	Deoxyribo nucleotides: biosynthesis and regulation.	
	Biosynthesis of nucleotide coenzymes.	
	Catabolism of purine and pyrimidine nucleotides.	
	6. Amino acids	
	General reactions of amino acid metabolism - Transamination,	
	decarboxylation,	7 h
	Oxidative and non-oxidative deamination of amino acids.	
	Special metabolism of methionine, histidine, phenylalanine,	
	tyrosine, tryptophan, lysine, valine, leucine, isoleucine and	
	polyamines. Urea cycle and its regulation.	
	Overview of biosynthethic pathways of amino acids and their	
	regulation;	
	Assimilation of ammonia, biosynthesis of essential and non-	
	essential amino acids, regulation of glutamine synthetase and	
	aspartate family of amino acids.	
Pedagogy:	Lectures/ tutorials/ assignments/ students' seminars/ interactive	
	learning/ self-study.	
Text Books/	1. Nelson, D. L.; Cox, M. M.; Lehninger Principles of	
References /	Biochemistry, W.H.Freeman; 2017, 7th Edition.	
Readings	2. Voet, D.; Voet, J. G.; Pratt, C. W.; Fundamentals of	
	Biochemistry, John Wiley & Sons Inc., 2016, 5th Edition.	
	3. Berg, J. M.; Stryer, L.; Tymoczko, J. L.; Gatto, G. J.;	
	Biochemistry; W.H Freeman; 2019, 9th Edition	
	4. Kuchel, P.; Easterbrook-Smith, S.; Gysbers, V.; Guss, J. M.;	
	Hancock, D.; Johnston, J.; Jones, A.; Matthews, J.; Schaum's	
	Outline of Biochemistry, McGraw-Hill Book Co., 2009, 3rd	
	Edition.	

Title of the Course: Molecular Biology [T]

Prerequisites	Students should have basic knowledge of genetics.	
for the		
course:		
Course	To acquaint students on the basic concepts of molecular biology. It	
Objective:	explains the structure of nucleic acids, their packaging inside living	
	cells and viruses, damages caused to DNA, the repair mechanisms	
	initiated by the cell, the expression and regulation of genes in	
	prokaryotes and eukaryotes.	
Course	The student will be able to understand the fundamental concepts of	
<u>Outcome</u>	genetics and will gain an understanding on the flow of genetic	
	information in viruses, prokaryotes and eukaryotes.	
Content:	1. Structure of nucleic acid	6h
	Structure of DNA and RNA, Types of DNA based on their	
	structure and their importance in cell (A-DNA, B-DNA, Z-	
	DNA), Types of DNA based on the functionality and their	
	importance in cell (Satellite DNA, Palindrome DNA, Repetitive	
	DNA), Types of RNA (mRNA, antisense mRNA, rRNA,	
	tRNA), Fundamental functions of DNA.	
	2. Packaging of nucleic material: Packaging of nucleic material in	6h
	viruses (icosahedral capsid and helical capsids), Packaging of	
	nucleic acids in prokaryotes (supercoiling, nucleosomes and	
	nonhistone proteins), Escherichia coli as a model prokaryotic	
	organism, Packaging of nucleic acids in eukaryotes to form	
	chromosomes (supercoiling, nucleosomes, histones, chromatin	
	and chromosome), Yeast as a model eukaryotic organism,	
	Importance of structural features of chromosome (telomere,	
	centromere and repetitive sequences), Functions of the	
	chromosomes.	

3. DNA damage by mutations, repair and recombination mechanisms

12 h

Types of mutations (point mutations, frameshift mutations, forward mutations, reverse mutations, suppressor mutations, transitions and transversions), Role of Mutagenic agents (spontaneous and induced mutagenic agents), DNA repair mechanisms/ pathways: (Base excision repair, Mismatch repair, SOS repair, Photoreactivation repair, recombination repair, Mechanisms of Genetic recombination: Homologous and site-specific recombination, Role of synaptonemal complex, lamp brush chromosomes, chi sequences, Rec BCD system, Role of Rec A, Ruv C, Holliday junctions.

4. Flow of genetic information and expression of genes in prokaryotes and eukaryotes:

12 h

Central Dogma of flow of genetic information, replication of DNA, Transcription of RNA, synthesis and processing (transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination, RNA to proteins (reverse transcription).

Post transcriptional attenuation, riboswitches, alternate splicing, RNA interference, RNA processing, RNA editing, and polyadenylation, structure and function of different types of RNA, RNA transport.

Translation of mRNA to proteins: Structure of Ribosome (eukaryotes and prokaryotes), formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, genetic code, aminoacylation of tRNA, tRNA-identity, aminoacyl tRNA synthetase, and translational proof-reading, translational inhibitors, Post translational modification of proteins in prokaryotes and Eukaryotes.

Control of gene expression at transcription and translation level: regulating the expression of phages, viruses, prokaryotic and

	eukaryotic genes, role of chromatin in gene expression and gene	
	silencing.	
	Role of Recognition sequences or motifs of gene regulatory proteins;	
	Genetic switches and their role in gene expression.	
Pedagogy:	Lectures (online or physical)/ tutorials/laboratory work/ field work/	
	project work/ seminars/ term papers/assignments/ presentations/ self-	
	study/ Case Studies etc. or a combination of some of these. Sessions	
	shall be interactive in nature to enable peer group learning.	
References/	1. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M.,	
Readings	Scott, M.P., Zipursky, L., & Darnell, J.; Molecular cell biology;	
	W.H. Freeman; 2008, 5 th Edition.	
	2. Watson, J. D., Molecular Biology of the Gene; Pearson/Benjamin	
	Cummings; 2013, 7 th Edition.	
	3. Davis, L. G., Dibner, M. D. and Battey, J. F., Basic Methods in	
	Molecular Biology, Elsevier; 1986.	
	4. Gardner, E. J., Simmons, M. J. and Snustad, D. P. Principles of	
	Genetics, John Wiley & Sons, 1981, 6 th Edition.	

Title of the Course: Laboratory course in Biochemistry-I

<u>Prerequisites</u>	Should have studied the theoretical concepts in respective
for the	Biochemistry courses.
course:	
Course	1. This course develops basic understanding and skills of
<u>Objectives</u>	various instruments and techniques in biochemistry,
	analysing biomolecules, Analytical biochemistry and
	Molecular biology.
	2. The course aims to provide knowledge about the on-going
	research in various national research institutes and the
	functioning of industries and industrial processes and also to

	understand the job prospects in research institutes and	
	industries.	
Course	1. Fundamentals of Biomolecules unit of the practical will	
<u>Outcomes</u>	train the students with skilful handling and estimating	
	biomolecules and other metabolic products.	
	2. Analytical Biochemistry-I part of this practical will	
	eexplain the principle and working of basic instruments in	
	analytical laboratory that will train the students in handling	
	various instruments in Analysis.	
	3. Molecular Biology unit of the practical will teach the	
	students techniques involved in genomic DNA isolation	
	and PCR amplification for its use in molecular research.	
	4. Field trip/study tour unit of this course will help the	
	students to understand the working of industries and	
	research institutions and provide them an insight of the	
	prospects available to them. The students will understand	
	the activities and research being carried out in industries	
	and research institutes which reflects the applications of	
	biochemical principles.	
<u>Content</u>		
	I. Biomolecules	24 h
	1. Standard curve for glucose by DNSA and quantitative	
	estimation of test sample.	
	2. Comparison of colorimetric methods for protein estimation	
	 Biuret and Folin-Ciocalteau methods. 	
	3. Estimation of total sugar by anthrone method.	
	4. Estimation of amino acids (ala, tyr, trp) and protein by direct	
	spectroscopy.	
	5. Estimation of nucleic acid by direct spectroscopy.	
	II. Analytical Biochemistry-I	24h
	1. Calibration of pH meter/weighing balance. Preparation of	
	buffers using pH meter and determination of pH of given	
	sample	

2	2. Separation of lipids by thin layer chromatography	
3	3. Column chromatographic separation of organic molecule.	
4	. Separation of molecules by HPLC.	
5	5. Separation of compounds based on their chemical nature	
	by solvent extraction.	
11	II. Molecular Biology	24 h
1	. Isolation of genomic DNA of bacterial cells, estimation of	
	quantity and purity of DNA by spectrophotometry, and	
	agarose gel electrophoresis.	
2	. PCR amplification of a specific gene using genomic DNA as	
	a template and agarose gel analysis of PCR product to	
	determine amplicon size.	
I	V. Field trip/Study tour	24 h
1.	. Visit to Research/Academic Institutes:	
	E.g., National Centre for Antarctic and Ocean Research	
	[NCAOR], National Institute of Oceanography [NIO],	
	BITS-Pilani, K.K. Birla, Goa campus and ICAR-Central	
	Coastal Agricultural Research Institute (ICAR-CCARI) and	
	such others.	
2.	. Visits to Industries:	
	Pharmaceutical industry, Agricultural farming, Food and	
	beverage.	
3.	. Report writing:	
	Students are supposed to submit report based on above visits	
	highlighting the following points:	
	i. Instrumental facility available and their applications	
	ii. Industrial processes and products	
	iii. Quality checking parameters	
	iv. Ongoing research work.	
4.	. Evaluation:	
	i. Every student is supposed to present his/ her report before	
	i. Every student is supposed to present his/ her report before	
	the Committee suggested by the School Council.	

	presentation and viva.
Pedagogy:	Lectures/ tutorials/ laboratory work/ field work/ project work/
	outreach activities/ viva/ seminars/ assignments/ term papers/
	presentations.
Text Books/	1. Leksakorn A. and Chaicherdsakul T. Basic Biochemistry
References /	laboratory manual. Assumption University Press Inc.,
Readings:	Thailand. 2006, 3 rd edition.
	2. Bettelheim and Landesberg. Laboratory experiments for
	general, organic and Biochemistry. Harcourt Inc., 2000, 4th
	edtion.
	3. J. Kenkel, Analytical Chemistry for technicians, Lewis
	publishers, 2002, 3rd Edition.
	4. Karson, S., Miller H. Srugi M., Withrow, D.S. Molecular
	biology techniques: A classroom laboratory manual.
	Elsevier. 2019, 4 th edition.
	5. Gakhar S.K, Miglani, M. and Kumar, A. Molecular Biology.
	A laboratory manual. Wiley. 2019.
	In addition to above, references given under respective theory
	courses (BCC 101, BCC 103, BCC 107) may be referred.

M.Sc. BIOCHEMISTRY PART-I OPTIONAL PAPERS

Programme: M. Sc. (Biochemistry)

Course Code: BCO 110 Title of the Course: Immunology and Immunotechniques [T]

Number of Credits: 3

Effective from AY: 2021-22

<u>Prerequisites</u>	Basic understanding of pathogens, blood cells and human	
for the	physiology.	
course:		
Course	The objective of the course is to provide an insight into the	
<u>Objectives</u>	components of the immune system, their development, their	
	functions and their mechanisms of action and various	
	Immunological techniques.	
Course	1. This course will enlighten the students on the importance of	
Outcomes	immune system in human body to fight pathogens.	
	2. Students will be able to understand mechanisms of	
	Immunological response.	
	3. Students will develop an understanding of antigen-antibody	
	interactions and various serological techniques for	
	immunological research.	
Content	1. Cells and organs of the immune system	5h
	2. Innate immune response: Mechanical barriers to	5 h
	infection, Physiological factors contributing to innate	
	immunity, Inflammatory response and Phagocytic system,	
	Complement system.	
	3. Adaptive immune response: Cell-mediated and Humoral	5h
	immunity- primary and secondary immune response,	
	Major Histocompatibility Complex- Molecular	
	organization of MHC molecules (H-2, HLA), Structure of	
	MHC molecules. Class I MHC-peptide and Class II MHC-	
	Peptide interactions. Antigen presenting cells (APCs),	
	Antigen processing and presentation pathways.	
	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	4. Antigens and Antibodies:	4h

	T	
	Antigens, Immunogens, Haptens, Epitopes.	
	Antibodies: Structure and function of various, classes of	
	immunoglobulins, Antigenic determinants on	
	immunoglobulins, monoclonal and polyclonal antibodies	
	and their production by hybridoma technology.	
	5. Immunogenetics: Generation of antibody diversity, class	
	switching among constant-region genes	2h
	6. Immune effector mechanisms – Cytokines (properties,	
	receptors and functions), Immunological tolerance,	5h
	Hypersensitivity reactions and Autoimmunity.	
	7. Immune system in health and disease:	
	Immunodeficiencies, AIDS, Transplantation immunology,	4h
	Concepts of vaccines.	
	8. Immunotechniques:	
	Antigen – antibody reactions: Principles and techniques- in	6h
	vitro precipitation, agglutination, immunofluorescence,	
	immunodiffusion, immunoprecipitation,	
	immunoelectrophoresis, ELISA, RIA, Western blotting,	
	Immunohistochemistry, flow cytometry.	
Pedagogy:	Lectures (online or physical)/ tutorials/ laboratory work/ viva/	
	seminars/ term papers/assignments/ presentations/ self-study.	
Text Books/	1. J. Owen, J. Punt, S. Stranford. J. Patricia. Kuby	
References /	Immunology, WH Freeman and Company, USA. 2012, 8th	
Readings:	Edition.	
	2. S.J. Martins, D.R. Burton, I.M. Roitt, P.J. Delves. Roitt's	
	Essential Immunology. Wiley Blackwell. 2017, 13th	
	edition.	
	3. A. Abbas, A. Lichtman, S. Pillai. Cellular and Molecular	
	Immunology. Saunders, Elsevier, USA. 2014, 8 th edition.	
	4. S.C. Parija. Textbook of Microbiology and Immunology.	
	Elsevier. 2012, 2 nd edition.	
	5. F.C. Hay and O.M.R. Westwood. Practical Immunology.	
	Cold spring Harbour. 2002, 4 th edition.	

Title of the Course: Biochemistry of environmental pollution and remediation [T]

Prerequisites	It is assumed that the students have a basic knowledge of	
for the course:	environment pollutants and biogeochemical cycles (water, O, C,	
ioi the course.	N, S, P).	
a		
Course	This course develops concepts in Environmental Pollution	
Objectives:	(Impact on air, water and soil), role of microorganisms in	
	biogeochemical cycles and bioremediation of pollutants	
Course	Learning of impact of various environmental pollutants on air,	
Outcomes:	water and soil, role of microorganisms in biogeochemical cycles	
	and bioremediation of pollutants and the biochemistry of	
	remediation mechanisms for developing further abatement	
	strategies	
Content:	1. Environment and Pollutants: Environment and its	14 h
	component; Atmosphere, soil, aquatic – fresh water, marine	
	systems; biogeochemical cycles. Pollutants: classification,	
	toxicity, synergistic or antagonistic action. Eco-toxicology:	
	concept of permissible limits, ED50 & LD50; acute and	
	chronic exposures; biochemical effects and genotoxicity.	
	Monitoring of pollution using indicator microorganisms,	
	biosensors: genetically modified organisms and enzymes.	
	Significance of dissolved oxygen, BOD, COD. Environment	
	protection regulations, impact assessment and standards.	
		14 h
		14 11
	Greenhouse gases and CFCs – sources and effect on the	
	ozone layer; consequences; concept of carbon credit.	
	Atmospheric particulate matter and smog – effect on	
	respiratory system Elements such as asbestos, lead – toxicity	
	and occupational hazards. Soil Xenobiotics, agricultural	
	chemicals, improper waste disposal Hydrocarbons: petroleum	
	and polynuclear aromatics such as naphthalene, benzo-	
	pyrene, solvents, pesticides, lead and other heavy metals -	

	significance on health. Aquatic/Marine – fresh water, marine	
	systems. Discharge of industrial effluents such as mining,	
	metals, pesticides, textiles, thermal waters, aquaculture,	
	sewage; oil spills – impact on aquatic life and the food chain;	
	consequences on human health	
	3. Remediation of waste: Treatment of waste Concepts of	8h
	Reuse, Recycle, Recovery. Introduction: Waste water/ sewage	
	treatment, Solid waste management, Hospital waste	
	management. Bioremediation: Concept and technologies.	
	Biological systems - plants, bacteria and fungi; microbial	
	consortia. Microbial processes – enzymic transformations, co-	
	metabolism, microbial adhesion, biofilms, production of	
	extracellular polymers and emulsifiers. Removal of metal	
	pollutants through sedimentation, sorption, precipitation,	
	speciation conversion	
	Emerging eco-friendly alternatives for chemical industry -	
	Green chemistry and Green Technology.	
Pedagogy:	Lectures (online or physical)/ tutorials/laboratory work/ outreach	
	activities/ project work/ viva/ seminars/ term papers/assignments/	
	presentations/ self-study/ Case Studies etc. or a combination of	
	some of these. Sessions shall be interactive in nature to enable	
	peer group learning.	
Text Books/	1. Manahan S. E; Environmental Chemistry; Lewis Publishers,	
References /	2000,7 th edition.	
Readings	2. Salker A. V; Environmental Chemistry; Narosa Nublishing;	
	2017, 1 st edition	
	3. De A. k; Environmental Chemistry; New Age International	
	Publishers; 2005, 3 rd Ed	
	4. Dara, S.S., Mishra D. D; A text book of Environmental	
	Chemistry and Pollution Control; S. Chand Publishers; 2004.	
	5. Enger E. D., Smith B. E.; Environmental Science: A study of	
	Interrelationships; WCB Publication, McGraw-Hill Higher	
	Education.; 2019, 15 th edition.	

6. Khopkar S. M., Environmental Pollution Analysis. New Age	
International Pvt. Ltd.; 2005, 1 st edition.	
7. Mitchell R., Cu J. D.; Environmental Microbiology; Wiley-	
Blackwell Publication; 2009.	
8. Moore J. W., Moore, E. A.; Environmental Chemistry;	
Academic Press; 1976, 1 st edition	
9.Maier R., Pepper I., Gerba, C., Gentry T.; Environmental	
Microbiology; Academic Press; 2008, 2 nd edition	

Title of the Course: Cell Biology [T] **Number of Credits:** 3

Effective from AY: 2021-22

Prerequisites	Should have basic knowledge on Prokaryotic and eukaryotic cells.	
for the		
course:		
Course	The objective is to offer detailed knowledge about cell biology,	
<u>Objectives</u>	various cellular organelles and the cell communication pathways	
	associated with the cellular processes of the cells. The course aims to	
	provide insights of basic cell culture techniques.	
Course	1. Students will learn about cell structure, cell division and cell	
<u>Outcomes</u>	cycle mechanisms, various cellular organelles and their	
	functions.	
	2. Students will acquire insight into the processes of transport	
	across cell membranes,	
	3. Students will gain knowledge about the concepts of various	
	cellular communication pathway and their importance.	
	4. This course will give them understanding of basic Cell culture	
	techniques needed to work in a Biological research laboratory.	
	5. This course will provide the students with the base for various	
	courses in life science including Cancer biology,	
	Neurochemistry, etc.	

Content	1. Structural organizations, structure and functions of cellular	6h
	and sub-cellular organelles: prokaryotic and eukaryotic cells,	
	Animal and plant cells	
	2. Biological membrane structure and function: Structure and	4h
	functions of membrane, Transport across cell membrane-	
	Passive and active transport of molecules across biological	
	molecules, membrane pumps.	
	3. Cell division and cell cycle: Mitosis and Meiosis, their	4h
	regulation	
	4. Cellular communication and Cell signalling: Signal	10h
	transduction pathway, Signalling molecules and their receptor-	
	G-Protein Coupled Receptors, Receptor Tyrosine Kinases, MAP	
	kinase pathway, JAK-STAT pathway; light signaling in plants,	
	bacterial chemotaxis and quorum sensing	
	Programmed cell death: Apoptosis	
	5. Plant tissue culture: techniques and applications- Introduction	4h
	to plant tissue culture and various requirements, preparation steps	
	for tissue culture, surface sterilization of plant tissue material,	
	basic procedure for aseptic tissue transfer, tissue culture	
	methodologies; incubation and maintenance of culture;	
	Applications of PTC.	
	6. Animal tissue culture: techniques and applications-	4h
	Introduction to animal tissue culture and various requirements,	
	Stem cells, typical cell lines, Growing mammalian cells and	
	general maintenance of cells; Application of ATC.	
	7. Microbial culture techniques: In vitro culture techniques,	4h
	nutrient requirements.	
Pedagogy:	Lectures (online or physical)/ tutorials/ laboratory work/ viva/	
	seminars/ term papers/assignments/ presentations/ self-study.	
Text Books/	1. Gerald Karp. Cell and Molecular Biology: Concepts and	
References /	experiments. John Wiley and sons, Inc. 2015, 8 th edition.	
Readings:	2. Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger,	
	Anthony Bretscher, Hidde Ploegh, Angelika Amon, Kelsey C.	

Martin. Molecular cell biology. W.H. Freeman and company,
New York. 2016, 8 th edition.
3. DeRobertis and Saunders. Cell and Molecular Biology. Saunders
College Publishers. 2017, 8 th edition.
4. Pranav Kumar and Usha Mina. Pathfinder Academy CSIR-JRF-
NET Life Sciences. Pathfinder publications. 2016, 7 th edition.
5. Michael Pelczar, Jr, R.D. Reid, E.C.S. Chan. Microbiology.
MacGraw-Hill. 2001, 5 th edition.
6. R. Ian Freshney. Culture of Animal Cells: A Manual of Basic
Technique and Specialized Applications. Wiley-Blackwell. 2016,
7th Edition.
7. Roberta H. Smith. Plant tissue culture: technique and experiments.
Academic Press. 2012, 3 rd edition.

Title of the Course: Analytical Biochemistry-II **Number of Credits:** 3

Effective from AY: 2021-22

<u>Prerequisites</u>	Students should have studied the theory/ instrumentation and	
for the	application of some of the basic bio-analytical techniques. It is	
course:	assumed that students have a basic knowledge of fundamentals in	
	biochemistry and certain basic techniques in routine laboratory	
	analysis.	
Course	1. Introduction of various bioanalytical techniques for analysis.	
Objectives:	2. Evaluate the utility of various analytical techniques as a	
	qualitative and quantitative tool.	
	3. Develop concepts in techniques and instruments required for	
	macromolecule structure determination and other techniques	
	such as tracers for metabolic pathways.	
Course	1. Students should be able to differentiate between various	
Outcomes:	analytical techniques based on their theory and sensitivity	
	achieved.	

2. Students should be in a position to explain the principles of various techniques and apply the knowledge of the techniques for designing various experiments in research and development. 3. Students should be able to choose between various techniques of structure elucidation based on the information desired and interpret the data obtained to a fair level. **Content:** 1. Optical methods of analysis: Theory and application of UV-4 h visible spectrophotometry, fluorimetry, atomic absorption spectrophotometry (AAS). **2. Microscopy:** Basic aspects of compound microscope, theory and 4 h applications of Light, Dark, Phase-contrast, and Inverted. **3. Bioimaging and image processing:** Principle, application and 7 h profile analysis: fluorescence microscopy, epifluorescence, immuno-fluorescence microscopy, and confocal scanning microscopy. Theory, instrumentation and applications of atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM). Optical tweezers, photography, digital imaging and image processing, **4. Radioisotopes:** Nature of radioactivity and its detection, 7 h measurement of radioactivity, Disintegration kinetics, Radioactivity counters - GM Counter, Scintillation Counter, Isotope dilution analysis, Autoradiography, radiorespirometry, Tracer techniques for metabolic pathways. Safety measures in handling radioisotopes. 5. Spectroscopic techniques for macromolecule structure 8 h determination: Principles, application and profile analysis of FTIR, NMR, X-ray diffraction, optical rotatory dispersion, circular dichroism. **6. Mass Spectrometry:** Principle, components, working and 6 h applications of mass spectrometer, different types of ionization methods used in mass spectrometer (CI, EI, ESI, FAB), different types of mass analysers used in mass spectrometer (magnetic sector, quadrapole), MALDI-MS, MALDI-TOF-MS, ICP-MS,

	introduction to GCMS, LCMS.	
Pedagogy:	Lectures (online or physical)/ tutorials/ laboratory work/ outreach	
	activities/ project work/ vocational training/ seminars/ term papers/	
	assignments/ presentations/ self-study etc. or a combination of some	
	of these. Sessions shall be interactive in nature to enable peer group	
	learning.	
Text Books/	1. Wilson, K.; Walker, J.; Principles and Techniques of Practical	
References /	Biochemistry; Cambridge University Press; 2010, 7 th Edition.	
Readings	2. Christian, G. D.; Dasgupta, P. K.; Schug, K. A.; Analytical	
	Chemistry; John Wiley & Sons; 2013, 7th Edition.	
	3. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of	
	Instrumental Analysis; Cengage Learning; 2016, 7 th Edition.	
	4. Norris, J. R.; Ribbons, D.W.; Methods in Microbiology;	
	Academic Press; 1971, 1 st Edition.	
	5. Parakhia, M. V.; Tomar, R. S.; Patel, S.; Golakiya, B. A.;	
	Molecular Biology and Biotechnology: Microbial Methods; New	
	India, 2010.	
	6. Homes, D. J.; Peck, H.; Analytical Biochemistry; Pearson	
	Education Limited; 1998, 3 rd Edition.	
	7. de Hoffmann, E.; Stroobant, V.; Mass Spectrometry: Principles	
	and Applications; John Wiley & Sons Ltd; 2007, 3 rd Edition.	

Title of the Course: Laboratory techniques and Applications of Biochemistry

Prerequisites	Should have basic knowledge on various Analytical techniques,	
for the	Cell biology, Immunotechniques and Biochemistry of	
course:	environmental pollution and remendiation.	
Course	The objective of this practical course is to provide hands-on-	
<u>Objectives</u>	experience in Cell biology, Immunotechniques, Analytical	

	techniques and analysing environmental samples and pollution.	
Course	1. The Cell biology part of the practical will give them	
<u>Outcomes</u>	understanding and hands-on training of basic Cell culture	
	techniques needed to work in a Biological research	
	laboratory.	
	2. Immunology and Immunotechniques unit of this practical	
	will train the students with skillful handling of various	
	techniques in Immunological research.	
	3. Analytical Biochemistry-II part of this practical will explain	
	the principle and working of basic instruments in analytical	
	laboratory that will train the students in handling various	
	instruments in Analysis.	
	4. Biochemistry of environmental pollution part of this	
	practical will train the students about analysis of	
	environmentally significant water quality parameters and	
	predicting the environmental quality based on observed data.	
Content		
	I. Cell Biology	24 h
	1. Microbial culture techniques: Isolation, identification and	
	characterization and maintenance of bacterial and fungal cells;	
	_	
	characterization and maintenance of bacterial and fungal cells;	
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells).	
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and	
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell	
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell counting, cytotoxicity and viability testing.	
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell counting, cytotoxicity and viability testing. 3. Plant tissue culture techniques: Surface sterilization of	
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell counting, cytotoxicity and viability testing. 3. Plant tissue culture techniques: Surface sterilization of plant material, excision, Aseptic tissue transfer, callus culture	24 h
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell counting, cytotoxicity and viability testing. 3. Plant tissue culture techniques: Surface sterilization of plant material, excision, Aseptic tissue transfer, callus culture and micropropagation.	24 h
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell counting, cytotoxicity and viability testing. 3. Plant tissue culture techniques: Surface sterilization of plant material, excision, Aseptic tissue transfer, callus culture and micropropagation. II. Immunology and Immunotechniques	24 h
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell counting, cytotoxicity and viability testing. 3. Plant tissue culture techniques: Surface sterilization of plant material, excision, Aseptic tissue transfer, callus culture and micropropagation. II. Immunology and Immunotechniques 1. Agglutination assays:	24 h
	characterization and maintenance of bacterial and fungal cells; Cell counting and viability (fungal/bacterial cells). 2. Animal cell culture techniques: Isolation, culturing and maintenance of cell lines, Microscopic examination, Cell counting, cytotoxicity and viability testing. 3. Plant tissue culture techniques: Surface sterilization of plant material, excision, Aseptic tissue transfer, callus culture and micropropagation. II. Immunology and Immunotechniques 1. Agglutination assays: A) Determination of ABO and Rh blood group,	24 h

	A) Single Immunodiffusion	
	B) Double Immunodiffusion	
	3. VDRL test	
	4. Rapid tests:	
	A) Malarial antigens Pv/Pf	
	B) Dengue IgM and IgG antibodies	
	C) Hepatitis HBsAg	
	5. ELISA	
	6. Immunoelectrophoresis	
	7. Determination of Immunoglobulins.	
	A) Precipitation of antibodies with (NH4)2 SO4	
	B) Determination of antibody concentration.	
	C) Separation and visualization of immunoglobulins by	
	SDS-PAGE.	
III.	Analytical Biochemistry – II	24h
1.	Visualization of cells by Light and Phase contrast	
	microscopy.	
2.	UV-Visible spectroscopic studies to demonstrate Beer-	
	Lambert Law, extinction coefficient determination and	
	quantitative analysis.	
3.	Measurement of fluorescence using Spectrofluorimeter.	
4.	Demonstration of: GC, IR, NMR, and Mass/MALDI-TOF	
5.	Elucidation of structure of cellular metabolites using IR,	
	NMR and Mass profiles.	
IV.	Biochemistry of environmental pollution and remediation	24 h
1.	Estimation of Dissolved oxygen (DO) and Biochemical	
	Oxygen Demands (BOD) of given water sample using	
	Winkler method.	
2. 1	Estimation of Chemical Oxygen Demands (COD) of water	
	sample and assessment of water quality using observed BOD	
	and COD values.	
3.	Detection of sewage pollution by screening for indicator	
	organisms such as E. coli.	

	4. Biotransformation of xenobiotics.
Pedagogy:	Lectures/ tutorials/ laboratory work/ field work/ project work/
	viva/ seminars/ assignments/ term papers.
Text Books/	1. Bhatia, S., Naved, T., Sardana, S. Animal tissue culture
References /	facilities. IOP publishing ltd., 2019.
Readings:	2. Sharma G.K., Jagetiya, S., Dashora, R. General Techniques of
	Plant Tissue Culture. Lulu Press Inc., United States. 2015.
	3. Prescott, H. Laboratory exercise in Microbiology. MacGraw-
	Hill Companies. 2002, 5 th edition.
	4. Vogel's Text book of Quantitative Inorganic Analysis,
	Pearson Education, Asia, 2000, 6th Ed.
	In addition to above, references given under respective theory
	courses (BCO 124, BCO 110, BCO 125, BCO 111) may be
	referred.