Programme: M. Sc. (Biochemistry)

Course Code: BCC 405 Title of the Course: Laboratory course in Biochemistry-I

Number of Credits: 4

Effective from AY: 2021-22

Prerequisites	Should have basic knowledge on Biochemistry.	
for the course:		
Course	1. This course develops basic understanding and skills of	
Objectives	various instruments and techniques in biochemistry,	
	analysing biomolecules, Analytical biochemistry, Cell	
	biology and Molecular biology.	
Course	1. The Biomolecules unit of the practical will train the students	
<u>Outcomes</u>	with skilful handling and estimating biomolecules and other	
	metabolic products.	
	2. Analytical Biochemistry-I part of this practical will eexplain	
	the principle and working of basic instruments in analytical	
	laboratory that will train the students in handling various	
	instruments in Analysis.	
	3. Molecular Biology unit of the practical will teach the students	
	techniques involved in genomic DNA isolation and PCR	
	amplification for it's use in molecular research.	
	4. Field trip/study tour unit of this course will help the students	
	to understand the working of industries and research	
	institutions and provide them an insight of the prospects	
	available to them. The students will understand the activities	
	and research being carried out in industries and research	
	institutes which reflects the applications of biochemical	
	principles.	
Content		
	I. Biomolecules	24 h
	1. Standard curve for glucose by DNSA and quantitative	
	estimation of test sample.	
	2. Colorimetric methods for protein estimation – Biuret method	

3. Colorimetric methods for protein estimation –Folin-	
Ciocalteau methods.	
4. Estimation of total sugar by anthrone method.	
5. Estimation of amino acids (ala, tyr, trp) and protein by direct	
spectroscopy.	
6. Estimation of nucleic acid by direct spectroscopy.	
II Analytical Dischamistry I	24h
II. Analytical Biochemistry-I	2411
1. Calibration of pH meter/weighing balance. Preparation of	
buffers using pH meter and determination of pH of given	
sample	
2. Separation of compounds based on their chemical nature by	
solvent extraction.	
3. Separation of lipids by thin layer chromatography	
4. Separation of organic compounds by thin layer	
chromatography	
5. Column chromatographic separation of organic molecule.	
6. Separation of alpha amino acids by paper chromatography.	
7. Separation of molecules by HPLC.	
III. Molecular Biology	24
1. Preparation and maintenance of microbial culture	
2. Isolation of genomic DNA of bacterial cells	
3. Estimation of quantity and purity of DNA by	
spectrophotometry,	
4. Agarose gel electrophoresis of bacterial DNA	
5. PCR amplification of a specific gene using genomic DNA as	
a template.	
6. Agarose gel analysis of PCR product to determine amplicon	
size.	
IV. Field trip/Study tour	24 h
1. Visit to Research/Academic Institutes:	≠ → 11
National Centre for Antarctic and Ocean Research [NCAOR],	
National Institute of Oceanography [NIO], BITS-Pilani, K.K.	
readonal histitute of Oceanography [1910], D115-Filalli, K.K.	<u> </u>

	Birla, Goa campus and ICAR-Central Coastal Agricultural
	Research Institute (ICAR-CCARI).
	2. Visits to Industries:
	Pharmaceutical industry, Agricultural farming, Food and beverage.
	3. Report writing:
	Students are supposed to submit report highlighting the
	following points:
	i.Instrumental facility and their applications
	ii.Industrial processes and products
	iii.Quality checking parameters
	iv.Ongoing research work.
	4. Evaluation:
	i. Every student is supposed to present his/ her report in
	Departmental council.
	Evaluation will be based on report writings, oral presentation and
	viva.
Pedagogy:	Lectures/ tutorials/ laboratory work/ field work/ project work/
	viva/ seminars/ assignments/ term papers.
Text Books/	References given under respective theory courses (BCC 401,
References /	BCC 402, BCC 403) may be referred.
Readings:	