Programme: M. Sc. (Biochemistry)

Course Code: BCO 404

Title of the Course: Analytical Biochemistry-II

Number of Credits: 3

Effective from AY: 2021-22

Prerequisites	Students should have studied the theory/ instrumentation and	
for the course:	application of some of the basic bio-analytical techniques. It is assumed that students have a basic knowledge of fundamentals in	
	biochemistry and certain basic techniques in routine laboratory analysis.	
<u>Course</u> <u>Objectives:</u>	 Introduction of various bioanalytical techniques for analysis. Evaluate the utility of various analytical techniques as a qualitative and quantitative tool. Develop concepts in techniques and instruments required for macromolecule structure determination and other techniques such as tracers for metabolic pathways. 	
Course Outcomes:	 Students should be able to differentiate between various analytical techniques based on their theory and sensitivity achieved. Students should be in a position to explain the principles of various techniques and apply the knowledge of the techniques for designing various experiments in research and development. Students should be able to choose between various techniques of structure elucidation based on the information desired and interpret the data obtained to a fair level. 	

Content:	1. Optical methods of analysis: Theory and application of UV- 4	h h
	visible spectrophotometry, fluorimetry, atomic absorption	
	spectrophotometry (AAS).	
	2. Microscopy: Basic aspects of compound microscope, theory and	h
	applications of Light, Dark, Phase-contrast, and Inverted.	• 11
	3. Bioimaging and image processing: Principle, application and	
		/ h
	immuno-fluorescence microscopy, and confocal scanning	
	microscopy. Theory, instrumentation and applications of atomic	
	force microscopy (AFM), scanning electron microscopy (SEM),	
	transmission electron microscopy (TEM). Optical tweezers,	
	photography, digital imaging and image processing,	
	4. Radioisotopes: Nature of radioactivity and its detection,	/ h
	measurement of radioactivity, Disintegration kinetics, Radio-	
	activity counters - GM Counter, Scintillation Counter, Isotope	
	dilution analysis, Autoradiography, radiorespirometry, Tracer	
	techniques for metabolic pathways. Safety measures in handling	
	radioisotopes.	
	5. Spectroscopic techniques for macromolecule structure	8 h
	determination: Principles, application and profile analysis of	• 11
	FTIR, NMR, X-ray diffraction, optical rotatory dispersion,	
	circular dichroism.	
	6. Mass Spectrometry: Principle, components, working and	ó h
	applications of mass spectrometer, different types of ionization	
	methods used in mass spectrometer (CI, EI, ESI, FAB), different	
	types of mass analysers used in mass spectrometer (magnetic	
	sector, quadrapole), MALDI-MS, MALDI-TOF-MS, ICP-MS,	
	introduction to GCMS, LCMS.	
Pedagogy:	Lectures (online or physical)/ tutorials/ laboratory work/ outreach	
	activities/ project work/ vocational training/ seminars/ term papers/	
	assignments/ presentations/ self-study etc. or a combination of some	

	of these. Sessions shall be interactive in nature to enable peer group
	learning.
Text Books/	1. Wilson, K.; Walker, J.; Principles and Techniques of Practical
References /	Biochemistry; Cambridge University Press; 2010/ 7th Edition.
Readings	2. Christian, G. D.; Dasgupta, P. K.; Schug, K. A.; Analytical
	Chemistry; John Wiley & Sons; 2013/ 7th Edition.
	3. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental
	Analysis; Cengage Learning; 2016/ 7th Edition.
	4. Norris, J. R.; Ribbons, D.W.; Methods in Microbiology; Academic
	Press; 1971/1 st Edition.
	5. Parakhia, M. V.; Tomar, R. S.; Patel, S.; Golakiya, B. A.;
	Molecular Biology and Biotechnology: Microbial Methods; New
	India, 2010.
	6. Homes, D. J.; Peck, H.; Analytical Biochemistry; Pearson
	Education Limited; 1998, 3 rd Edition.
	7. de Hoffmann, E.; Stroobant, V.; Mass Spectrometry: Principles
	and Applications; John Wiley & Sons Ltd; 2007/ 3rd Edition.