Programme: M. A. Economics

Course Code: ECC 115 Title of the Course: Mathematics for Optimisation

Number of Credits: 4 Total Contact Hours: 48

Effective from AY: 2018-19

Prerequisites for	Nil	
the course:		
Objective:	To learn the mathematical tools and concepts that aid in	Contact
	analysing economic optimisation.	Hours
<u>Content:</u>		
	1. Vectors and Matrices	
		16
	Vectors, Vector Spaces, Linear Dependence, Basis.	
	Elementary operations with Matrices, Equivalence,	
	Determinants, Inverse of Matrix, Rank of a Matrix, Cramer's	
	Rule. Introduction to Input-Output techniques.	
	2. Functions & Limits:	
	Limit of a function, continuity. Necessary and sufficient	4
	conditions	
	conditions.	
	3. Differentiation	
		10
	Rules of differentiation: Total derivatives and Partial	
	derivatives. Maxima and minima, points of inflexion.	10
	 Optimisation – Unconstrained & Constrained 	10
	Application to economics: cost curves, demand curves,	
	Theory of the consumer and Theory of the Firm under Perfect	
	and Imperfect Competition.	
	5. Integration:	8
		0
	Reimann integral, Fundamental Theorem of the calculus,	
	Techniques of integration and Definite integrals. Applications	
	in economics: Theory of the firm (cost) & Growth	
<u>Pedagogy</u> :	10. Chalk and talk aided by power-point lectures	
	11. PC lab exercises	
	12. Android based activity	
	13. Assignments and presentations	
	14. Group activity	
	15 MOOC (or similar) Component	
References/Read	• A.C. Chiang, (1995) Fundamental Methods in	
ings	Mathematical Economic McGraw Hill, New York	
	• Simon, Carl P. & L. Blume(1994) Mathematics for	

	 Economists W.W. Norton, New York Sydsaeter and Hammond (2004), Mathematics Of Economics Analysis, Pearson. 	
<u>Learning</u> Outcomes	By the end of the course, successful students are expected to understand how mathematical concepts aid in understanding optimisation in economics.	