	Instrumentation amplifier.	5
	Sampling: An Anti-aliasing, Multiplexers, Sample and	
	Hold, Track and Hold.	5
	Computer Interfaces: Serial (RS-232), Parallel, GPIB	
	(IEEE-488), Universal Serial Bus (USB)	4
	Display Devices: Review of LED, LCD, CRT devices,	
	segmental and dot matrix displays. General purpose test	7
	equipments: CRO, Digital storage oscilloscope, Digital	
	voltmeter, Wave	10
	Spectrum analysis, Lock-in-amplifiers, Pulse generators	
	and waveform generators,	
	and waveform generators,	
	Control System: Types of control system - open loop,	
	closed loop, linear, non-linear, continuous, discrete,	10
	frequency and time response, open loop motor control,	10
	DC motor phase control, PD, PI, PID	
	De motor phase control, D, 11, 11D	
	Tutorials:	
	1. Study of Open loops control System.	
	2. Electronics Chocks.	
	3. Design of On/Off temperature controller using	
	thermistor sensor.	
	4. Study of SEM.5. Study of Scanning Probe technique.	
Total	4. Study of SEM.3. Study of Scanning Frobe technique.	48
	Lactures/Assignment Presentation	40
Pedagogy:	Lectures/Assignment, Presentation	
References/Readings	1. Industrial Control Electronics – John Webb, Kevin	
Keterences/Keaurings	Greshok, Merrill Publications, .	
	2. Elements of Electronic Instrumentation and	
	Measurement, Joseph J. Carr, Prentice Hall India.	
	3. Modern Electronic Instrumentation and Measurement	
	Techniques, Albert Helfnick, William Cooper, PHI	
	<u> </u>	
Looming Outcomes	4. Instrumentation Measurement by Northrop CRC 2001	
Learning Outcomes	This course is appropriate for the students who would like	
	to make his career in industries. The features of various	
	networks taught in this course will enable him/her to guide	
	an industry for choosing an appropriate instrumentation	
	network and types of interfaces he can adopt for	
	automation of sophisticated instruments used in quality	
	control and analysis. The course empowers a student who	
	is likely to go for higher studies in electronics and	
	Instrumentation technology.	

Course Code: ELC302 **Title of the Course:** Electronics Practical III

Number of Credits: 4

Prerequisites for the	Should have knowledge in microcontroller and embedded	
course:	systems	

Objective:	The course gives hands on experience on TMS 320 DSP,	
	Altera NIOS II and National Instruments Platform	
Content:	 1. Design of S/C circuit for Strain gauge /Glucose strip @ 3.3V. 2. Design of S/C circuit for Thermistor sensor @ 3.3 V and interfacing with ARM. 3. FFT using TMS 320. 4. Convolution using TMS 320. 5. Analysis of frequency components using Spectrum Analyzer 6. VHDL implementation for the Multiplexer & Demultiplexer 7. VHDL Implementation for Encoder & Decoder 8. VHDL implementation for the Counter. 9. Verilog implementation for the Memory Module. 10. Verilog implementation for the Latch. 11. Display Hello world and blinking Led's using NiosII soft core 12. Matrix Manipulation on NIOSII Core (Multiplication, determinant, Inverse, Transpose) 13. Android (two experiments) 14. NI ELSVIS(two experiments) 15. Obstacle Avoidance using 89V52 based Robot 16. Obstacle detection for varying range using 89v52 based Robot 17. Line follower using 89v52 based Robot 	
Total		96
Pedagogy:	Assignment, Presentation and Laboratory work	
Learning Outcomes	 On completing this couse they are in a position to design signal conditioning circuit, also they are exposed to Altera FPGA by implementing various digital circuits using VHDL and Verilog. Student themselves will be able to develop an android app. Can handle a NI ELVIS board to implement and testing any circuit. 	