Course Code: ELE-506 Course Title: Digital System Design Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Total Marks: 100

Prerequisites for the course

Should have studied digital electronics at the graduate level

Objectives of Course

This course is intended to,

- Teach principles of combination and sequential logic design
- Develop implementation skills using hardware description languages.
- Teach and familiarize with industry technologies such as Memory, CPLDS, FPGA.

Course Content

Unit I	Introduction	6 Hours		
About Digital	Design, Analog versus Digital, Electronic Aspects of Digital D	esign, PLD's, ASIC,		
Digital Design	level. Digital Concept and Number System: General Position	nal number system		
conversions,	Operation, BCD, Gray Code, Character Codes, Codes for Actic	ons, Conditions, and		
States nCube	s and Distance, Codes for Detecting and Correcting Errors, E	rror-Detecting		
Codes, Error-Correcting and Multiple Error-Detecting Codes, Hamming Codes, CRC Codes,				
Two Dimensional Codes, Checksum Codes, m-out-of-n Codes, Codes for Serial Data				
Transmission and Storage, Parallel and Serial Data, Serial Line Codes				
Unit II	Combinational Logic Design Principles	4 Hours		
Switching Algebra, Combinational-Circuit Analysis, Combinational-Circuit Synthesis, and				
Timing Hazards.				
Unit III	Hardware Description Languages	4 Hours		
HDL-Based Digital Design, The VHDL Hardware Description Language, The Verilog Hardware				
Description Language				
Unit IV	Combinational Logic Design Practices	4 Hours		
Documentation Standards, Circuit Timing, Combinational PLDs, Decoders, Encoders, Three-				
State Devices , Multiplexers, Exclusive-OR Gates and Parity Circuits , Comparators, Adders,				
Subtractors, and ALUs, Combinational Multipliers, Exclusive-OR Gates and Parity Circuits,				
Comparators, Adders, Subtractors, and ALUs, Combinational Multipliers.				

Unit V	Sequential Logic Design Principles & Practices	12 Hours	

Bistable Elements, Latches and Flip-Flops, Clocked Synchronous State-Machine Analysis, Clocked Synchronous State-Machine Design, Designing State Machines Using State Diagrams, State-Machine Synthesis Using Transition Lists, Another State-Machine Design Example, Decomposing State Machines, Feedback Sequential-Circuit Analysis, Feedback Sequential-Circuit Design, Features ,Sequential-Circuit Design with VHDL , Sequential- Circuit Design with Verilog, Sequential-Circuit Documentation Standards , Latches and Flip-Flops ,Sequential PLDs , Counters, Shift Registers, Iterative versus Sequential Circuits , Synchronous Design Methodology , Impediments to Synchronous Design , Synchronizer Failure and Metastability

Unit VI	Memory, CPLDS	10 Hours		
Read-Only Me	emory, Read/Write Memory, Static RAM, Dynamic RAM, Col	mplex		
Programmable Logic Device				
Unit VII	Field Programmale Gate Array	10 Hours		
Introduction, FPGA Architectures, Configuration: SRAM-Based FPGAs and Antifuse				
Permanently Programmed FPGAs, Chip I/O, Circuit Design of FPGA Fabrics, Architecture of				
FPGA Fabrics, FPGA Soft-core Processor Development flow.				
VIII	Neural Networks on FPGA	10 Hours		
Introduction,	Designing a Neuron, Activation functions, Design of layers,	Training and		
validations, Hardware verification, Case study using PYNQ/VITIS AI framework.				
Pedagogy				
lectures/ Experiential Learning				
Course Outcome				
The student will,				
 Understand principles of combination and sequential logic design 				
Leverage Hardware description languages for realization of combinational and				
sequential designs				
 Understand the architecture of field programmable gate array. 				
References/Readings				

1. Digital Design Principles and Practices, by John F. Wakerly, Prentice Hall's Fourth Edition.

2. Digital System Design using VHDL: Charles. H.Roth ; PWS (1998)

3. Scott Hauck and Andre DeHon, Reconfigurable Computing, Morgan Kaufmann, 2008

4. Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer, "Logic Synthesis," McGraw-Hill, USA, 1994.

5. Neil Weste and K. Eshragian,"Principles of CMOS VLSI Design: A System Perspective,2nd edition, Pearson Education, 2000.

6. Kevin Skahill, "VHDL for Programmable Logic," Pearson Education, 2000. M.N.O. Sadiku, Elements of Electromagnetics 2nd Edition), Oxford University press, 1995.