Number of Credits: 04 Effective from AY: 2022-23

Total Hours: 60

Total Marks: 100

Prerequisites for the course

Should have knowledge of Basic electronics hardware, Mathematics, and programming.

Objectives of Course

This course is intended to:

- Introduce robotics and the key elements and constituents of a robot; science and technology in robots; ROS.
- Understand and explain the various elements of the robotic system.
- Study all necessary kinematics and various analysis techniques.
- Understand the robot dynamics and control theory.
- Give exposure to futuristic robotic technologies.

Course Content

Unit I	Introduction	10 Hours		
Introduction- Brief history, types, classification and usage, growth; Robot applications- Manufacturing industry, defense, rehabilitation, medical, etc.; Laws of Robotics; Introduction to ROS				
Unit II	Elements of robots	12 Hours		
Links, joints, actuators, and sensors;				
Position and orientation of a rigid body, Homogeneous transformations;				
Representation of joints, link representation using D-H parameters, Examples of D-H				
parameters, and link transforms;				
Different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo				
motor;				
Types of transmissions;				
Purpose of sensors, internal and external sensors, common sensors – encoders,				
tachometers, strain gauge-based force-torque sensors, proximity, and distance measuring				
sensors, and vision sensors.				
Unit III	Kinematics	07 Hours		
Direct and Inverse Kinematics;				
Kinematics of serial robots: Direct and inverse kinematics problems, Inverse kinematics of				
constrained and redundant robots, Tractrix-based approach for fixed and free robots and				
multi-body systems;				
Kinematics of parallel robots: direct and inverse kinematics problems, Mobility, Stewart-				

Gough platform, Degrees-of- freedom of parallel mechanisms and manipulators, Active and			
passive joints.			
Unit IV	Velocity and static analysis	05 Hours	
Onit IV			
Linear and angular velocity of links, Manipulator Jacobians for serial and parallel			
Statics of serial and parallel manipulators. Statics and force transformation matrix of a			
GoughStewart platform, Singularity and Statics analysis.			
Unit V	Robot Dynamics & Controls	10 Hours	
Robot dynamics equation; General procedure for dynamics equation forming and introduction to control; Actuator dynamics and PD, PID control for robots; Trajectory			
tracking control; Lyapunovs theorems; Neural network control design			
Unit VI	Robotics Applications	09 Hours	
Introduction, development, and working of: UAV, Drone, Humanoid Robots & Underwater robot			
Unit VII	Futuristic Robots	07 Hours	
Introductions to MEMS (micro-electro-mechanical systems),			
Introduction to Cognitive Robotics and Human-Robot Interaction, Robots in Space & Defense applications			
Case Studies:			
1. Development of obstacle avoidance and line following robot.			
2. Implementation of ROS.			
 Simulation of robotic trajectories. Drane based image analysis 			
4. Drone-based image analysis.			
Pedagogy			
Lectures/Experiential Learning			
Course Outcome			

Students will:

- Gain knowledge of the basic concepts in robotics, ROS, key elements, and constituents of the robotic system.
- Learn the kinematics of serial and parallel robots and will be able to perform various analyses.
- Understand the various robotic dynamics and control designs.
- Able to understand and develop robotic systems.
- Have an update on the latest robotic research & technologies.

References/Readings

- 1. Ghosal, A., 'Robotics: Fundamental Concepts and Analysis', Oxford University Press, 9th reprint, 2013
- 2. Robert J Schilling, 'Fundamentals of Robotics', Prentice Hall India, 1st ED, 2003
- 3. John J Craig, 'Introduction to Robotics', Prentice Hall International, 3rd ED, 2005
- 4. Jitendra R. Raol, Ramakalyan Ayyagari, 'Control Systems: Classical, Modern, and Al-Based Approaches', CRC Press, 1st ED, 2019
- 5. Gao, Yang, 'Space Robotics and Autonomous Systems', Institution of Engineering & Technology, 2021
- 6. Lentin Joseph, Aleena Johny, 'Robot Operating System (ROS) for Absolute Beginners', 2nd ED, 2022