Course Code:	ELE-622		
Course Title: I	Data Science and Machine Learning		
Number of Cr	edits: 04 Total Hours: 60 To	otal Marks: 100	
Effective from	AY: 2022-23		
Prerequisites	s for the course		
Should have	the basic knowledge of linear algebra and Python progra	imming language.	
Objectives of	f Course		
This course is	intended to:		
• Introd	Juce the mathematical foundations required for Data Sci	ence and Machine	
learni	ng.		
• Introd	luce the statistical and probabilistic concepts.		
Learn	the data analysis and processing.		
 To stu 	udy different machine learning and deep learning technic	ques.	
Course Conte	ent		
Unit I	Introduction	05 Hours	
Introduction	to Data Science, Data Science Process, Fundamentals of	linear algebra	
Unit II	Foundations of Data Science	08 Hours	
Python for Da	ata Science- Programming basics, libraries – Numpy, SciF	y, Scikit-Learn, Tensor	
flow, Keras, F	flow, Keras, Py-tourch, Pandas, Matplotlib, Seaborn. Statistical concepts – Descriptive and		
Inferential St	atistics, Probability		
Unit III	Data Visualization, Exploration and Manipulation	12 Hours	
Types of Data	a, Visualization, Exploratory Data Analysis, Data Cleansin	g, Data Manipulation,	
Feature Extra	Feature Extraction and Feature Selection		
Unit IV	Regression and Classification	10 Hours	
Linear Regres	Linear Regression, Logistic Regression, Multivariate Regression, Support Vector Machine,		
Decision Tree, Random Forest, Naive Bayes, Regularization, Goodness of fit			
Unit V	Machine Learning	15 Hours	
Machine Lea	rning Process Flow, Overfitting and under fitting, Bias-Va	riance, Types of	
machine lear	ning, Dimensionality Reduction-Principal Component An	alysis, K-Nearest	
Neighbour, C	lustering- K-means		
Unit VI	Deep Learning	10 Hours	
Neural Networks, Convolutional Neural Networks, Transfer Learning, Reinforcement learning,			
Recurrent Ne	aural Networks		
case studies			
1. In	nplement data cleansing and manipulation operations		
2. In	nplement Support Vector Machine algorithm for multicla	iss classification	
3. In	nplement clustering algorithm		
4. D	emonstrate the overfitting and under fitting conditions		
5. Fa	ace recognition using deep convolutional neural network	and using transfer	
le	arning.		
Pedagogy			
lectures/ Exp	eriential Learning		
Course Outco	ome		
The students	will:		
1. Understar	nd the fundamental concepts of data science and machir	ne learning.	
2. Perform d	lata processing technique using python.		

nine learning methods.	 Explain and implement the machine
------------------------	---

References/Readings

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, 'The Elements of Statistical Learning -Data Mining, Inference, and Prediction', Springer New York, 2013
- 2. Joel Grus, 'Data Science from Scratch First Principles with Python', 2nd Edition, O'Reilly Media, 2019.
- 3. Cathy O'Neil and Rachel Schutt, 'Doing Data Science Straight Talk From The Frontline', O'Reilly. 2013.
- 4. Laura Igual, Santi Seguí, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí, Lluís Garrido, 'Introduction to Data Science - A Python Approach to Concepts, Techniques and Applications', Springer International Publishing, 2017
- 5. Samir Madhavan, 'Mastering Python for Data Science', Packt Publishing, 2015
- 6. Ian Goodfellow, Yoshua Bengio, Aaron Courville, 'Deep Learning', MIT Press, 2016
- 7. Zhi-Hua Zhou, 'Machine Learning', Springer Nature Singapore, 2021