Course Code: ELE-501

Course Title: Instrumentation & Control Theory
Number of Credits: 04

Total Hours: 60

Effective from AY: 2022-23

Prerequisites for the course

knowledge of analog and digital electronics, Basics of differential equations.

Objectives of Course

This course is intended to:

- Introduce principles of transduction and actuator.
- Explain the important parameters used in instrument characterization, Types of error committed by a user and how to deal with them.

Total Marks: 100

- Describe various standards followed for accurate measurement.
- Explain the techniques used to convert analog data into digital domain and its analysis and storage.
- Understand instruments such as Oscilloscope, spectrum analyzers, wave analyzers, Lock in amplifiers depth.
- Fundamentals of control theory and working of PID controller tuned for a given application.

Course Content

Unit I	Introduction	8 Hours
Basic Conce	pts of measurements, Calibrations and standards, Transduce	rs: Types and
parameters, Sensors - Displacement, Strain, Vibration, Pressure, Flow, Temperature, Force		
and Torque		
Unit II	Signal Conditioning	8 Hours
Introduction, Amplification, Simple ended amplifier, Instrumentation amplifier, Types of		
Filters		
Unit III	Sampling	8 Hours
Fundamental concepts, Anti-aliasing, Multiplexers, Sample and Hold, Track and Hold.		
Unit IV	Computer Interfaces	08 Hours
Serial (RS-232), Parallel, GPIB (IEEE-488), Universal Serial Bus (USB) and Variants, Bluetooth		
Unit V	Display Devices	10 Hours
Review of LED, LCD, Plasma display devices, segmental and dot matrix displays, MEMS display		
Unit VI	General Purpose Test Equipments	08 Hours

CRO, Digital storage oscilloscope, Digital voltmeter, Wave Analyser, Spectrum analysis, Lockin-amplifiers, Pulse generators and waveform generators

Unit VII Control System 10 Hours

Types of control system - open loop, closed loop, linear, non-linear, continuous, discrete, frequency and time response, open loop motor control, Principles of PD, PI, PID

Pedagogy

Lectures/Experiential Learning

Course Outcome

students will:

- Explain measurement parameters, calibrations and standards in electronic instrumentation.
- Comprehend the significance of signal conditioning and sampling theorem.
- Gain the knowledge of various computer interfaces, and understand the construction, working principle of different display devices and general-purpose equipments used in signal analysis.
- Explain the working principle of different types of control systems.

References/Readings

- 1. H. S. Kalsi, 'Electronic Instrumentation', Tata MacGrow-Hill
- 2. Joseph J. Carr, 'Elements of Electronic Instrumentation and Measurement', Prentice Hall India.
- 3. Albert Helfnick and William Cooper, 'Modern Electronic Instrumentation and Measurement Techniques', Prentice Hall India.
- 4. Robert Northrop, 'Introduction to Instrumentation and Measurements', CRC Press

(Back to Index)