Name of the Programme: M. Sc (Botany)

Course Code: BOT-509

Title of the Course: Lab in Microbiology and Plant Pathology

Number of Credits: 1 (30 hours) Effective from AY: 2022-23

Effective from AY: 2022-23		
<u>Prerequisites</u>	Basic knowledge of microbial habitats in a tropical setup and	
for the course:	general idea of diseases affecting crops.	
Objective(s):	To impart requisite field and lab skills in plant microbiology and	
	pathology with emphasis on tropical strains and local needs in	
	agriculture and economy dealing with economically important	
	microbes.	
Content:	Microbiology	
	1. Microbial ecology in relation to the plants-Introduction to field	2 hours
	techniques to study plant-microbe interactions.	
	2. Isolation of Phylloplane microflora on microbiological media	4 hours
	and visualization of colony characteristics.	
	3. Isolation of Rhizosphere microflora on microbiological media	4 hours
	and visualization of colony characteristics.	
	4. Isolation of endophytes and visualization of colony	4 hours
	characteristics.	
	5. Maintenance of pure cultures of phylloplane, Rhizosphere and	2 hours
	endophytic microflora using common microbiological media.	
	6. Use of Microscopy in studying microbes in detail - preparation	2 hours
	of unstained and stained specimens of eubacteria,	
	actinobacteria. Photomicrography and digital image analysis of	
	representative pure cultures and interpretation of results.	
	7. Preparation of unstained and stained specimens of yeasts,	2 hours
	fungi. Examination of gram character of bacteria.	
	8. SEM study of bacteria, fungi, plant viruses using electron	2 hours
	dense stains.	
	9. Studying Phylogeny of plant viruses using bioinformatics	2 hours
	tools.	
	10. Study of root nodulation, symbiosome, Rhizobium,	2 hours
	leghemoglobin and Quorum Sensing in bacterial population.	
	11. Methods of isolation and culturing of fungi: colony	2 hours
	characters; microscopic observations; morphology of	
	hyphae and spores.	
	12. Study of reproductive structures of different genera of fungi.	2 hours
	13. Study of fungal physiology in pure colonies –	2 hours
	characterization of fungal colonies.	
	14. Microfluidics in mycology- fabrication and application of	2 hours
	microfluidics devices to fungal cultures for real time	
	visualization of fungal metabolic activities.	
	15. Introduction to mycological databases and myco-	2 hours
	systematics on Internet.	
	16. Introduction to Mycobioinformatics- tools and techniques	2 hours
	(exercise to construct fungal phylogenetic tree to be given).	

	17. Observation of different fungal substrates using sterile moist chamber incubation (e.g. herbivore dung; decomposing leaf-litter).	2 hours
	18. Observations on ecological succession of fungi; Terrestrial, marine and freshwater fungi.	2 hours
	19. Particle-plating technique for isolation of litter fungi.	2 hours
	20. Technique for isolation of fungal endophytes.	2 hours
	21. Isolation and serial dilution techniques (e.g. soil, dung and	2 hours
	leaf litter).	2 110013
	Plant pathology	
	22. Collection of infected specimens in the field and observation of symptoms.	2 hours
	23. Hand sections and tease mounts from infected plant specimens.	2 hours
	24. Study of viral, bacterial and fungal diseases of crop plants (cereal, vegetable, fruit, and plantations) from surrounding habitats in Goa.	4 hours
	25. Submission of 10 dried herbarium specimens of infected plant materials [fungal (4) +bacterial (3) + viral (3)] collected from nearby habitats.	2 hours
	26. A mini field project to study crop diseases from field and market specimens.	4 hours
	All plant pathology practicals will be conducted and any 16 hours from microbiology component will be conducted depending on availability of material, chemicals, equipments, etc.	
Pedagogy:	Field visits and lab exercises/sample collections/use of electronic, digital and visual keys, herbarium production/videos/moodle	
	guided exercises/mini projects/demonstration.	
References/	Agrios, G.N. (1997). Plant Pathology. Academic Press, New Delhi.	
Readings:	Bilgrami, K.S. and Dube, H. C. (1990). A text book of Modern Plant Pathology. Vikas Publishing House, New Delhi.	
	Butler, E.J. and Jones, S. G. (1949). Plant Pathology. Mc Millan, London.	
	Chatterjee, P.B. (1997). Plant Protection Techniques. Bharati Bhavan, Patna.	
	Chattopadhayay, S.B. (1991). Principles and Procedures of Plant Protection. Oxford & IBH, New Delhi.	
	Sharma, P.D. (2004). The Fungi for University students. Rastogi Publications, Meerut.	
	Srivastava, J.P. (1998). Introduction to Fungi. Central Book Depot, Allahabad.	
	Sumbali, G. (2005). The Fungi. Narosa Publishing House, New Delhi.	

<u>Learning</u> Outcomes:

- 1. Ability to work as a field microbiologist to sample various habitats and asplant pathologist being able to identify disease symptoms.
- 2. Being able to identify common micro and macrofungi from diverse natural habitats.
- 3. Being able to prepare herbarium of diseased plants.
- 4. Being able to isolate and manage microbial cultures.
- 5. Being able to perform image analysis of cultures.
- 6. Being able to apply techniques learnt in appropriate projects involving economically important microbes.