Name of the Programme: M. Sc. (Botany)

Course Code: BOT-527

Title of the Course: Mycorrhizal Biotechnology

Number of Credits: 2 Effective from AY: 2022-23

Effective from AY: 2022-23			
<u>Prerequisites</u>	Basic knowledge of Mycology.		
for the course:			
Objective:	To familiarize the students with various aspects of Mycorrhizal		
	fungi, study techniques and their applications.		
Content:	1. Biofertilizers: Definition, types, characteristic features, their	4 hours	
	role and importance in sustainable agriculture.		
	2. Mycorrhiza: Definition and historical perspective; Types of	4 hours	
	mycorrhizae; classification; Phylogeny; general importance.		
	3. Mycorrhizal Techniques: Isolation and pure culture	3 hours	
	preparation of ecto- and endo-mycorrhizae; Criteria for		
	identification - generic and specific level; staining techniques;		
	Trap and pure cultures; in vitro culture of AM fungi,		
	commercial production of inoculum.		
	4. Molecular and cell biology of AM symbiosis: Fungal partner;	4 hours	
	Cytological features of AM plant roots. Transfer of nutrients		
	between plants and fungi; Defense reaction during		
	colonization; Signaling pathways in AM fungi.	3 hours	
	5. Phosphate transport and role of AM fungi: Developmental		
	stages during mycorrhiza formation, Pathways in P uptake;		
	Sources of P, C: N ratio; P uptake from the environment;	2 hours	
	Plant phosphate transporters.	2 Hours	
	6. Phytohormones and AM symbiosis: Cytokinins, Gibberellins,		
	Ethylene, ABA, Auxins, Salicylic acid, Jasmonic acid; Role of		
	Jasmonates in mycorrhization.	3 hours	
	7. Ecology of AM fungi: Mycorrhiza formation in field soil;		
	effects of N and micronutrients. Microbial interactions,		
	phytoremediation; Effects on AM fungi – disturbance,	3 hours	
	agrochemicals and grazing.		
	8. Production of ectomycorrhizal fungal inocula and		
	inoculation procedures: Types of ecto-mycorrhizal inocula;	4 hours	
	Methods of preparation, inoculum procedures.	4 nours	
	9. Mycorrhizae in phytoremediation: Phytoremediation –		
	definition, advantages and limitations; Contaminated and		
	uncontaminated soils, heavy metals and their effects in		
	plants; Heavy metal detoxification mechanisms in plants and		
	AM fungi; Phyto-stabilization and phytoextraction; Glomalin		
	and its role; concepts for improving phytoremediation by		
	plant engineering.		
Pedagogy:	Lectures/Assignments/Tutorials/Self study.		
References/	Allan, M. F. (1991). The Ecology of Mycorrhizae. Cambridge		
Readings:	University Press.		
	1 '		

Bacon, C. W. and White, J. H. (2000). Microbial Endophytes Marcel Dekker, New York.	
Dwivedi, B. K. and Pandey, G. (1994). Biotechnology in India. Allahabad: Bioved Research Society.	
Patel, S., Sharma, A., & Batra, N. G. (2022). Arbuscular Mycorrhizal Fungi-Assisted Bioremediation of Heavy Metals: A Revaluation. In Innovations in Environmental Biotechnology. Springer, Singapore.	
Read, D. J., et al. (1996). Mycorrhizas in Ecosystems. Oxford University Press.	
Rodrigues, B. F. and Muthukumar, T. (2009). Arbuscular Mycorrhizae of Goa – A Manual of Identification Protocols. Goa University, Goa. 135 pp.	
Satyanarayana, T., Deshmukh, S. K., & Deshpande, M. V. (2021). Progress in Mycology. Springer Singapore.	
Schenck, N. C. (1982). Methods and principles of mycorrhizal research. St. Paul Minnesota.	
Schenck, N.C. and Perez, Y. (1990). Manual for the identification of VA mycorrhizal fungi. International Culture Collection of VA Mycorrhizal Fungi. Synergistic Publications, Gainesville, Florida, USA.	
Sylvia, D. M., et al. (1987). Mycorrhizae in the next Decade, Practical Applications and Research Priorities. University of Florida. Gainesville, Florida.	

Willis, A., et al. (2013). The ecology of arbuscular mycorrhizal

Better prospects in agro-based industries.

fungi. Critical Reviews in Plant Sciences 32:1-20.