SEMESTER IV

Research Specific Elective Courses

Name of the Programme: M. Sc Botany Course Code: BOT-606 Title of the Course: Research Methodology, Techniques, and Instrumentation No. of Credits: 4

Effective from AY: 2022-23				
<u>Prerequisites</u>	Knowledge of computers, information technology, and			
for the course:	biochemistry.			
Objective(s):	To impart training in literature survey, citations, scientific writing, experimental design, basic biostatistics, principles, and working of various instruments.			
Content:	 Literature survey: Need for literature review; research reading and discriminative reading; bibliographic collection; literature citation; different system of citations, Journal abbreviations. Computers and information technology in Research: Computer operating systems, search engines, e-journals, 	3 hours 3 hours		
	 online publications, M.S. office, Webliography. 3. Scientific Writing: Basics and importance of scientific writing; clarity, language; scientific paper and proposal components, Title, Abstract, Introduction, Materials and Methods, Results and Discussion, Conclusion, References, Tables, and 	3 hours		
	 Illustrations; Research article, Review Paper, Book Chapter, Presentation, Scientific poster. Use of Intellectual Property Rights to search IPR databaseas a tool for research, Patent databases: worldwide (Espacenet), country specific (Industrial property digital library, CIPO, 	4 hours		
	 SurfIP), Non-Governmental databases, IPR in data management, Data Licensing and Ownership. 5. Experimental Designs and Biostatistics: Basic principles of experiment, Experimental unit, and sampling unit, Observation, Hypothesis, Experimental error, replicates, controls, randomization, null hypothesis; Population and sample, variables, data collection sampling methods, Significance, statistical test. 	4 hours		
	 6. Laboratory practices and safety in the laboratory: Research Bioethics and Good Laboratory Practices, General safety measures, Chemical, Physical, and Biological hazards, spillage and waste disposal, disposal of radioactive waste, first aid, and Material Safety Datasheet (MSDS). 	2 hours		
	7. pH and buffer solutions : S.I. units; Molarity and Normality; Acids and bases; Hydrogen ion concentration and pH, Dissociation of acids and bases; Buffer solutions, reaction kinetics, and thermodynamics.	4 hours		
	8. Centrifugation Techniques: Basic principles of sedimentation; Relative Centrifugal Force (R.C.F.) and gravitational (g) force,			

	Density gradient centrifugation; design and care of rotors, safety aspects in the use of centrifuges.	3 hours
	9. Spectroscopic Techniques: General principles; Radiation energy and atomic structure; Basic law of light absorption; Types of spectra and their biological usefulness. Principle, application, and instrumentation of UV-VIS spectrophotometry; I.R. (infra-red) spectrophotometry; Spectrofluorometry, Atomic absorption spectroscopy (A.A.S.) and flame photometry; Mass spectrometry.	9 hours
	10. Chromatography Techniques : General Principles, techniques, and applications: Materials for column chromatography, adsorption, partition, molecular sieving, ion exchange, and affinity chromatography. Factors influencing resolution. Column development – isocratic system and gradient solvent. Chromatogram reading, qualitative and quantitative determination of peaks.	8 hours
	11. Electrophoresis Techniques: General principles, Gel electrophoresis of nucleic acids and proteins, Native PAGE, Sodium Dodocyl Sulphate-Polyacrylamide Gel Electrophoresis (S.D.S.–PAGE), Isoelectric focusing and its application, 2D electrophoresis, Pulsed-field electrophoresis, Capillary electrophoresis, Blotting techniques: Detection, recovery, and estimation.	7 hours
	12. Radiobiology : The nature of radioactivity; Atomic structure, stability, and radiation; Isotopes; Types of radioactive decay; Detection and measurement of radioactivity; Applications of radioisotopes in biological sciences; Safety aspects for the use of radioisotopes. Non-radioactive labelling.	
	13. Molecular techniques : Flow Cytometry, Immuno-techniques, Fluorescence Resonance Energy Transfer (FRET), Fluorescence Recovery After Photobleaching (FRAP), Yeast hybrid assay, Immunoprecipitation assay, Surface Plasmon Resonance, Proximity labelling, Electrophoretic Mobility Shift Assay (EMSA), Footprinting, Protein Crystallography, Microarray	2 hours
	analysis, Site-Directed Mutagenesis, Biosensors, Clustered Regularly Interspaced Short Palindromic Sequence/CRIPSR Associated Genes (CRISPR/Cas).	8 hours
Pedagogy:	Lecture/e-learning/Assignments/Seminars/Moodle.	
<u>References/</u> <u>Readings:</u>	 Bailey P.L. (1980). Analysis and ion selective electrodes 2nd Ed. Heyden, London. Bates R.G. (1973). Determination of pH: Theory and Practices, 2nd Ed. John Wiley, New York. Bauman R.P. (1981). Absorption Spectroscopy. John Wiley, New York 	
	Becker R.S. (1969). Theory and interpretation of fluorescence and phosphorescence, Wiley Interscience, New York.	

 · · · · · · · · · · · · · · · · · · ·	
Bell R. J. (1973). Introductory Fourier Transform spectroscopy. Academic Press, New York.	
Brech F. (1974). Analysis in instrumentation. Vol. 6. Plenum, New	
York.	
Colthup N.B., Daly L.H. and Wiberley S.E. (1975). Introduction to Infra-red and Raman Spectroscopy 2nd Ed. Academic Press.	
New York.	
Day, R.A. and Gastel, B. (2016). How to write and publish a	
scientific paper, Cambridge University Press.	
Dean J. and Raina T. (1969). Flame emission and atomic	
absorption. Dekker, New York.	
Dixon R.N. (1965). Spectroscopy and Structure. Mathuen, London	
Giddings J.C. (2002). Principles and Theory, Dynamics of	
Chromatography Part I Dekker, New York.	
Grob R.L. (2004). Modern Practices of Gas Chromatography. 2nd	
Ed. John Wiley, New York.	
Guilbault G.G. (Ed.) (2020). Practical Fluorescence. CRC Press.	
Gurumani N. (2006). Research methodology for biological	
sciences. M.J.P. Publishers, Chennai.	
Gurumani N. (2005). An Introduction to Biostatistics, M.J.P.	
Publishers, Chennai.	
Hames B.D. and Rickwood D. (1998). Gel electrophoresis of	
Proteins: A practical approach 2nd ed. IRL Press, Oxford. Hofmann A. and Clokie S. (2018). Wilson and Walker's Principles	
and Techniques of Biochemistry and Molecular Biology,	
Cambridge University Press.	
Jacob R., Alexander D. Lane L. (2018). A guidebook to Intellectual	
property:Patent, trademarks, copyrights and design. Sweet	
and Maxwell Itd, UK.	
Karp, G. (2009). Cell and molecular biology: Concepts and	
experiments, 7th edition. John Wiley and Sons, U.S.A.	
Kolthoff I.M. and Elving P. J. (1978). Treatise on analytical	
Chemistry, Wiley Interscience, New York.	
Myneni S.R. (2019). Patent Drafting and Specification Writing.	
New Era Law Publication, Hariyana.	
Pesez M and Bartos J. (1974). Colorimetric and Fluorometric	
Analysis of Organic Compounds and drugs, Dekker, New York.	
Reece, R. J. (2004). Analysis of genes and genomes. John Wiley	
and Sons Ltd.	
Sacks R.D. (1981). Emission Spectroscopy. John Wiley, New York.	
Saraswathy, N. and Ramalingam, P. (2011). Concepts and	
Techniques in Genomics and Proteomics. Biohealthcare	
Publishing (Oxford) Limited, New York.	
Sharma, B.K. (2006). Principal of analytical chemistry, Meerut	
Publication, Meerut.	
Simpson C.F. (1979). Techniques in liquid chromatography, Wiley- Heyden, New York. Horvath C. HPLC Vol. I Academic Orlando.	
 HEYNEH, NEW TOIK. HOIVALIT C. HELE VOILT ALAUEIHIL OHAHUU.	

	itz IS Giarda D.T. and Bahlandt C. Ian chromatography	
	itz J.S., Gjerde D.T. and Pohlandt C. Ion chromatography, thig, Heidelberg	
	S. S	
	J. M., and Rapley, R. (2008). Molecular Biomethods	
	book, Hertfordshire, U.K.	
Watson	I.N. (1976). Introduction to Mass spectroscopy, Raven,	
New Y	/ork.	
Willard	H.F., Merritt L.L., Dean, J.A. and Settle F.A. (1988).	
Instru	mental Method of analysis. C.B.S. Publishers and	
distrik	oution, New Delhi	
	D.R. and Mowthorpe D. J. (1976). Nuclear Magnetic	
Reson	ance Spectroscopy. John Wiley, New York.	
	W., Kirkland J.J. and Bly D.D. (2009). Modern size	
	chromatography, Wiley Interscience, New York.	
Learning 1. Will	enable a better understanding of the primary research	
Outcomes: meth	nodologies, instrumentation, and designs.	
2. Will	enable to gain comprehensive knowledge of proper	
	tific measuring and scaling approaches along with the	
	ry of computational tools.	
	enable better analysis and interpret qualitative and	
	ntitative data.	
	enable the investigation of specific biological questions.	
	enable to conceive knowledge about scientific writing	
and	presentation of credible scientific reports.	