Name of the Programme: M.Sc. Part-I (Chemistry)

Course Code: CHA-500 Title of the course: Techniques in Analytical Chemistry - I

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted by Goa Unit	or must iversity.
Course Objective:	 Learning various methods of data handling in analysis. Understanding the significance of sampling and calibration techniq Understanding principles and applications of various types of techniques Training the students to deduce structures based on IR, NM combined data. 	jues. IR, MS
Content:	1. Analytical Objectives and Data Handling Importance of analytical chemistry in research and industry; statistics and data handling in analytical chemistry, standard operating procedures, good laboratory practices: quality assurance, method validation and quality control.	No. of Hours 5
	2. Sampling and Calibration Techniques Sampling and sample preparation, general steps in chemical analysis, calibration of glass wares. Finding the best straight line-least square regression, correlation coefficient; Calibration curves, standard addition technique and internal standards. Chemical concentrations.	5
	3. Classical methods of Analysis Gravimetry and Titrimetric methods, Principle, methodology, Advantages & Disadvantages over instrumental methods. Conditions for identifying a given reaction as method of Analysis, Classification of reactions in titrimetric analysis (Acid-Base, redox, complexometric and precipitation), Standard solutions and their preparation. Selection of Visual Indicators in titrimetric Analysis	6
	4. Introduction to Electroanalytical techniques Introduction to electrochemical cell, electrode potential, Classification of electroanalytical techniques, working principles, and their applications	4
	5. Introduction to Thermoanalytical techniques Principle, Instrumentation and applications of Thermo Gravimetric Analysis, Differential Thermal Analysis, and Differential Scanning Calorimetry. Numericals based on TGA.	5
	6. Introduction to Chromatographic Techniques a. Principles of chromatography, classification of chromatographic techniques based on mechanism of retention, configuration, mobile and stationary phase.	15

Efficiency of separation- plate theory (theoretical plate	
concept) and rate theory (van Deemter equation).	
b. Principles and applications of Paper chromatography, thin	
layer chromatography. HPTLC, Size exclusion and Ion	
exchange chromatography Counter-current chromatography	
for isolation of natural products	
of Isolation of flatural products.	
c. Gas and Liquid Chromatography. Introduction, Instrumental	
Modules; The Separation System; Choice of Conditions of	
Analysis; Sample Inlet Systems; Detectors; Practical	
Considerations in Qualitative and Quantitative Analysis;	
Coupled Systems-introduction to GCMS, LCMS;	
Applicability-interpretation and numericals.	
7. Introduction to Spectroscopic Techniques	20
a. Interaction of Electromagnetic Radiation with Matter:	
Electromagnetic spectra regions of spectrum numericals	
b Illtraviolet and visible Spectroscopy. Electronic spectra and	
Molecular structure: types of electronic transition	
Chromophore and auxochrome absorption by isolated	
abromonhora acciusated abromonhoras aromatia	
chromophore, conjugated chromophores, aromatic	
compounds, inorganic chelates. Calculating Amax for	
Conjugated Dienes, Irienes, polyenes, α,β -unsaturated	
carbonyl compounds, Numericals. Choices and effect of	
solvents on UV-Vis. Quantitative Calculations: Beer-Lambert	
Law; Mixtures of absorbing species-laws of additivity of	
absorbance; calibration curve for calculation of unknown;	
Spectrometric errors in measurement; Deviation from	
Beer-Lambert Law - chemical deviation, instrumental	
deviation: Numericals for quantitative analysis using UV-VIS	
spectroscopy	
c Infrared Spectroscopy. Infrared absorption and molecular	
structures molecular vibrations types of vibrations IR	
structures, molecular violations, types of violations, in	
Spectra interpretation Fraguencies of functional group	
Spectra interpretation, Frequencies of functional group,	
Spectral Databases, Identification of unknown compounds.	
d. Spectrometric Instrumentation of UV-Vis and IR: Sources,	
monochromators, sample cells, detectors, instrumental	
wavelength and absorption calibration.	
e. Proton and Carbon NMR Spectroscopy: Theory of NMR,	
Instrumentation, Chemical shift, factors influencing chemical	
shift, solvents used in NMR, spin-spin splitting, coupling	
constant calculation, factors influencing coupling constant.	
f. Mass Spectrometry: Principle, Instrumentation and various	
fragmentation patterns.	
g Conjoint spectrometry problems. Structural elucidation of	
organic molecules using IR LIV NMR and MS	
organice more agains inc, or, infinite and into.	

	h. Raman Spectroscopy: Theory, Basic instrumentation and
	Structural analysis using Raman Spectra.
	(Note: Assignment based on all above spectrometric methods
	should be given to student. More weightage of lectures shall be
	given for solving IR and NMR data problems for structure
	elucidation)
Pedagogy:	Mainly lectures and tutorials Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used ICT mode should be preferred. Sessions should be interactive in nature
	to enable neer group learning
References /	1 G D Christian Analytical Chemistry 6 th Ed · Wiley 2004
References / Roadings.	2 I H Kennedy Analytical Chemistry: Principles 2 nd Ed : Saunders
Reaulings.	2. J. H. Kennedy, Analytical Chemistry. Trinciples, 2 Ed., Saunders College Publishing 1990
	3 G W Ewing Instrumental Methods of Chemical Analysis 5 th Ed
	McGraw- Hill Int., 1985.
	4. W. Kemp, Organic Spectroscopy, 3 rd Ed.; Palgrave, 1991.
	5. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch, Fundamentals of
	Analytical Chemistry, 9th Ed.; Cengage learning, 2014.
	6. F. J. Holler, D. A. Skoog, S. R. Crouch, Principles of Instrumental
	Analysis, 6 th Ed.; Thomson Books, 2007.
	7. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental
	methods of Analysis, 7 th Ed.; HCBS Publishing, 2004.
	8. C. N. Banwell, E. M. McCash, Fundamentals of Molecular
	Spectroscopy, 4 th Ed.; Tata McGraw- Hill, 2006.
	9. R. M. Silverstein, F. X. Webster, Spectrometric identification of
	Organic Compounds, 6 th Ed.; Wiley, 1998.
	10. H. Gunzler, A. Williams, Handbook of Analytical Techniques, 1 st
	Ed.; Wiley, 2001.
	11. P. S. Kalsi, Spectroscopy of Organic Compounds, 2 nd Ed.; New Age
	International, 2000.
	12. E. Pretsch, P. Buhlmann, C. Affolter, Structural Determination of
	Organic Compounds, 2 nd Ed.; Springer, 2005.
	13. L. D. Field, S. Sternhell, J. R. Kalman; Organic Structures from
	Spectra, 4 th Ed.; Wiley, 2007.
	14. R. A. Day, A. L. Underwood, Quantitative Analysis, 6 th Ed.; Prentice
	Hall, 2001.
	15. B. K Sharma, Instrumental methods of chemical analysis, Goel
	Publishing House, Meerut, 2004.
	10. K. Nakamoto, Intrared and Raman Spectra of Inorganic and
	17 D. L. Larkin, Infrared and Demon Spectroscover minimized
	17. P. J. Larkin, initiated and kaman Spectroscopy: principles and
	spectral Interpretation, 2 Ed., Elsevier, 2018.
	Vogal's Taxt Book of Quantitative Chamical Analysis (th Ed.
	Person 2000
	realson, 2009.

Course	1. Students will be able to analyse the role of statistical tools for
outcomes:	determination of error and organised data management for systematic
	interpretation.
	2. Student will be able to apply the sampling and calibration methods for
	obtaining reliable results.
	3. Students will be able to understand basic principles and scope of different
	methods of Analysis
	4. Students will be able to solve problems based on IR, NMR, MS combined
	spectral data.