Name of the Programme: <u>M. Sc -I (Analytical Chemistry)</u>

Course Code: CHA-501 **Title of the course:** Chemical methods of analysis

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites	Students should have studied analytical chemistry courses at M.Sc. C	hemistry	
for the course:	in semester I		
Course	1. Introduction to the various chemical method of analysis, details or		
Objectives:	underlying principle of chemical methods, advantages and limitations		
	2. Application of chemical methods for qualitative and quantitative ana	lysis	
Content	1. Acid-Base Titrations	No of	
	a. Standard acids and Base solutions,	hours	
	b. Theory of acid-base indicators for Acid-Base titrations		
	i. Colour change and range of indicator	10	
	ii. Selection of proper indicator		
	iii. Indicator errors		
	c. Neutralization curves for strong acid-strong base; weak		
	acid-strong base and weak base-strong acid weak acid-weak		
	base titrations		
	d. Polyfunctional acids and bases; titration curves for poly		
	functional acids and bases; titration curves for amphiprotic		
	species		
	e. Determining the equivalence point; feasibility of acid - base		
	titrations; magnitude of the equilibrium constant; effect of		
	concentration		
	f. Typical applications of acid-base titrations		
	2. Complexometric titrations		
	a. The complex formation reactions; Stability of complexes;	8	
	stepwise formation constants		
	b. Organic complexing agents; amino carboxylic acid titration		
	c. EDTA; acidic properties of EDTA; EDTA complexes with		
	metal ions; equilibrium calculations involving EDTA in		
	solution; condition of formation constants		
	d. EDTA titration curves; effect of other complexing agents on		
	EDTA; factors affecting the titration curves; completeness of		
	reaction		
	e. Indicators for EDTA titrations; Theory of common indicators		
	f. Titration methods using EDTA- direct titration; back titration		
	and displacement titration; indirect determinations; titration of		
	mixtures; selectivity, masking and damasking agents		
	g. Applications of EDTA titrations- hardness of water;		
	magnesium and Al in antacids; magnesium, manganese and zinc		
	in a mixture.		
	3. Precipitation titrations		

r		
	a. Introduction to precipitation titrations; feasibility of	6
	precipitation titrations	
	b. Titration curves	
	i. Effect of titrant and analyte concentration on titration curves	
	ii. Effect of reaction completeness on titration curves	
	iii. Titration curves for mixture of anions	
	c. Indicators for precipitation titrations	
	d. The Volhard, the Mohr's and the Fajan's methods	
	e. Titration of sulfate with barium	
	4. Basic concepts in Electrochemical Titrations	
	a. Faradic and non-Faradic currents	4
	b. Reversible and irreversible cells	-
	c. EMF series; standard electrode potential; Nernst equation;	
	calculation of cell potential; effect of current; ohmic potential;	
	polarization; decomposition potential; over voltage;	
	concentration polarization; mechanism of mass transport.	
	d. Introduction to potentiometric methods	
	5. Redox and potentiometric titrations	
	a. Redox Titrations: Equilibrium constants for redox reactions-	8
		0
	electrode potentials in equilibrium systems; calculation of	
	equilibrium constants	
	b. Redox titration curves- formal redox potentials; derivation of	
	titration curves	
	c. Factors affecting the shape of titration curves concentration;	
	completeness of reaction; titration of mixtures- feasibility of	
	redox titrations	
	d. Detection of end point and redox indicators	
	i. Structural aspect of redox indicators	
	ii. Specific and nonspecific indicators	
	iii. Choice of indicator	
	iv. Potentiometric end point detection	
	e. Sample preparation: pre-reduction and pre-oxidation	
	f. Potentiometric titrations	
	6. Gravimetric analysis	
	a. Introduction to gravimetric method of analysis	
	b. Properties of precipitates and precipitating reagents	6
	i. Completeness of precipitates	
	ii. Super saturation and precipitate formation	
	iii. Particle size and filterability of precipitates	
	c. Colloidal precipitates and crystalline precipitates	
	d. Purity of the precipitate; coprecipitation, post precipitation;	
	conditions for precipitation.	
	e. Fractional precipitation; precipitation from homogenous	
	solution;	

	f. Organic reagent as precipitants-dimethyl glyoxime, oxine,	
	cupferron, salicylaldoxime	
	g. Washing of precipitates; drying and ignition of precipitates;	
	calculation of results from gravimetric data;	
	h. Applications of gravimetric method	
	7. Clinical methods of analysis	
	a. Composition of Blood; Collection and Preservation of	10
	Samples;	
	b. Immunoassay: Radioimmunoassay; its principle and	
	applications; instrumentation for radio bioassay	
	c. Clinical application of the radioimmunoassay of insulin,	
	estrogen and progesterone; receptor techniques of breast cancer	
	d. Enzyme- linked immunosorbent assay; principles; practical	
	aspects; applications	
	e. Blood gas analyzer	
	f. Trace elements in the body	
	8. Environmental Sampling and Analysis	
	a. Acquiring meaningful Sample	8
	b. Air Sample Collection and Analysis	Ű
	c. Water Sample Collection and Analysis	
	d. Soil and Sediment Sampling	
	e. Sample Preparation for Trace Organics	
	f. Methods and Performance-Based Analyses	
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assign	ments /
	presentations / self-study or a combination of some of these can also	
	ICT mode should be preferred. Sessions should be interactive in r	
	enable peer group learning.	
References /	1. G. D. Christian, Analytical Chemistry, 6 th Ed., John Wiley, New York	. 2004.
Readings:	2. D. A. Skoog, D. M. West & F. J. Holler, Fundamentals of A	
and a second	Chemistry, 9 th Ed., Sounders College publishing, 2014.	
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, Vogel's Tex	tbook of
	Quantitative Inorganic Analysis, 6th Ed., Pearson Education Asia, 2000.	
	4. D. Harvey, Modern analytical chemistry, 1 st Ed., The McGraw-Hill, 2	
	5. G. H. Jeffery, J. Bassett, J. Mendham, R C. Denney, Vogel's Text	
	Quantitative Chemical Analysis, 5 th Ed., John Wiley, New York, 1989.	-
Course	1. Students will be able to explain the basic principle and chemistry	
outcomes:	behind different conventional method of analysis.	
	2. Students will know the limitation of method of analysis and will	l be in a
	position to choose an appropriate chemical method for particular analysis	
	3. Students will understand the various types of titration techniques.	
	4. Students will understand and will be able to apply various s	sampling
	techniques.	r0
L	i ··· inter	