Name of the Programme: <u>M. Sc -I (Analytical Chemistry)</u>

Course Code: CHA-504 **Title of the course:** Instrumental Methods of Analysis

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied analytical chemistry courses a Chemistry in semester I	t M.Sc.
Course Objective:	 Introduction of various instrumental methods for analysis. Understanding the utility of various instrumental method qualitative and quantitative analytical tool. 	ls as a
Content:	1. Diffraction Techniques: X-ray and Neutron Diffraction	No of
	a. Introduction to X-rays; interaction of X-rays with matter;	hours
	X-ray diffraction by crystals, Bragg's law.	
	b. Powder X-ray diffraction: instrumentation and applications.	15
	Interpretation of powder X-ray diffraction pattern. calculation	
	of lattice parameters.	
	c. Powder diffraction file and other crystallography databases.	
	d. Powder Neutron diffraction: theory, instrumentation and	
	applications.	1.5
	2. X-ray Spectroscopic Techniques:	15
	a. X-ray spectroscopy, theory of X-ray absorption and	
	emission. b. X-ray fluorescence (XRF) spectroscopy: introduction,	
	instrumentation, wavelength dispersive and energy dispersive	
	XRF, applications.	
	c. Energy dispersive X-ray (EDX) spectroscopy and Electron	
	probe microanalysis (EPMA): introduction, instrumentation	
	and their applications.	
	d. Introduction to X-ray absorption near edge structure	
	(XANES), Extended X-ray absorption fine structure (EXAFS)	
	and their applications.	
	3. Electron Spectroscopic Techniques:	5
	a. Introduction to Electron spectroscopy techniques.	
	b. X-ray and UV Photoelectron spectroscopy (XPS, UPS):	
	theory, instrumentation and their applications.	
	c. Introduction to Auger electron spectroscopy (AES) and	
	electron energy loss spectroscopy (EELS) and their	
	applications.	
	4. Microscopic Techniques:	10
	a. Optical microscopy: components of microscope, different	
	types of optical microscopy techniques; significance and	
	applications.	

	 Y. Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd Ed.; Wiley-VCH, 2013. A. M. Garcia-Campana, Chemiluminescence in Analytical Chemistry, 1 Ed.; CRC Press. 2001. R. F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, 2nd Ed.; Springer, 2016. E. H. Kisi and C. J. Howard, Applications of Neutron Powder Diffraction, 1st Ed., Oxford Science Publications, 2008. G. D. Christian, Analytical Chemistry, 6th Ed. Wiley, 2004.
Course outcomes:	 Students will be able to explain theory and instrumentation of various instrumental methods of analysis. Students will be able to judge suitability of different instrumentate methods for qualitative and quantitative analysis. Students will understand and will be able to apply various techniques of X-Ray analysis. Students will understand and will be able to apply various microscopi techniques.