Name of the Programme: M.Sc. Part-II (Analytical Chemistry)

Course Code: CHA-600 **Title of the course:** Practical Course in Analytical

Chemistry - III

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Should have studied Analytical chemistry practical course a	t M.Sc.
for the course:	Part-I.	
Course	1. To study various experimental techniques for analysis.	
Objectives:	2. To learn data analysis, handling and interpretation of spectra.	
Content	This course consists of 10 units of experiments in various	No of
	areas of Analytical chemistry. Minimum 20 experiments	hours
	which include at least 02 experiments from each unit shall	
	be conducted.	120
	Unit 1: Analysis of Pharmaceutical Tablets/Samples	12
	(Titrimetry)	
	i. Estimation of Paracetamol by titrimetry.	
	ii. Estimation of streptomycin in tablet sample by	
	Maltol method.	
	iii. Estimation of iron using Zimmermann-Reinhardt	
	reagent by titrating against KMnO ₄ .	
		10
	Unit 2: Ion exchange Chromatography and Solvent	12
	Extraction Method	
	1. Determination of capacity of a cation exchange resin.	
	11. Concentration and determination of copper (11) ions	
	from a brine solution using a chelating ion exchange	
	resin and AES/AAS	
	iii. Separation of organic mixture (acidic + basic +	
	neutral) by extraction.	
	Unit 3: Planar and Column Chromatography	12
	i. Thin layer chromatography analysis of commercially	
	available analgesic/antipyretic/antihistamine etc and	
	to identify the active ingredients.	
	ii. Purification and determination of amount of	
	paracetamol from commercial tablet by column	
	chromatography.	
	iii. Separation of a mixture of benzoin and benzil on	
	silica gel column.	
	Unit 4: Spectrophotometric Method	12
	i. Determination of pk value of methyl red indicator.	

ii.	Determination of stoichiometry and stability constant	
	of ferric salicylic acid complex by Job's method and	
	mole ratio method.	
iii.	Determination of the Fe ion as Fe-oxine complex.	
Unit 5	: HPLC Analysis	12
i.	Analysis of a mixture (benzene and toluene or	
	nitrobenzene and toluene) by normal/reverse phase-	
	HPLC.	
ii.	HPLC analysis of an analgesic (e.g. Ibuprofen)/or	
	any other drug with method development and	
	validation.	
iii.	Quantitative analysis of Paracetamol tablet by HPLC	
iv.	Determination of plate height/number of theoretical	
	plates by HPLC using Acetophenone as a reference	
	material.	
v.	Study of HPLC method development by using	
	linear/stepwise gradient elution for binary system.	
vi.	Determination of caffeine content in Tea or Coffee	
Unit 6	: Electrochemical Method	12
i.	pH-metric determination of the acid-base	
	dissociation constant and isoelectric point of amino	
	acid.	
ii.	Determination of moisture content in tablet powder	
	by Karl Fischer titration.	
iii.	Analysis of mixture of carbonate/bicarbonate present	
	in water sample using pH metry or Potentiometry.	
Unit 7:	: Gas Chromatographic Analysis	12
i.	GC analysis of a given sample mixture (e.g.	
	perfumes, cosmetics).	
ii.	GC analysis of non-volatile analyte by derivatization.	
iii.	Quantitative analysis of a mixture of chloroform and	
	carbon tetrachloride.	
iv.	Gas chromatographic analysis for a mixture of gases	
	like O_2 , N_2 and CO_2 .	
v.	Determination of alcoholic content in Beer or wine	
11	Analyzia of Owas/Min sucle/Inductorial Matanial	12
Unit 8:	Analysis of Ures/Minerals/Industrial Material	12
1. 	Analysis of iron Ore or Bauxite (Irom Goa).	
11. 	Analysis of cement or plaster of Paris.	
111.	Analysis of limestone or dolomite.	

	Unit 9: Other Instrumental Techniques	12
	i. Electrophoretic techniques for the separation of	
	nucleic acids or proteins	
	ii. Study the dissolution rate of commercial tablets.	
	iii. Determination of optical rotation of Chiral	
	compounds using polarimeter (e.g. Amino acids,	
	drugs, natural products, lactic acid, tartaric acid etc)	
	iv. Determination of sulphate ion content by	
	turbidimetry.	
	v. Determination of turbidity in water sample.	
	vi. TG/DTA analysis of sample or mixture (e.g.	
	MgCO ₃ -MgO).	
	vii. Determination of molar composition of Toluene-	
	Anisole mixture by qNMR.	
	Unit 10: Demonstration/Interpretation Exercises	12
	i. Demonstration/Interpretation of LC-MS spectra.	
	ii. Demonstration/Interpretation of NMR spectra of	
	Ethyl cinnamate/Vanilin.	
	iii. Assessment of TG-DTA plot.	
	iv. Statistical Evaluation of Data including Linear	
	Regression Analysis.	
	v. Analysis of materials using Microscopic Techniques.	
	vi. Demonstration of XRD and interpretation of	
	diffraction pattern.	
Dadagaggy	Dualah avaraisas / assignments / presentations / lah hand a	ut or o
reuagogy:	combination of some of these. Sessions shall be interactive in	ut of a
	to enable peer group learning	mature
Deferences /	1 I H Kennedy Analytical Chemistry Principles 2 nd Ed. Se	aunders
Readings	College Publishing 1990	aunders
Readings	2 G D Christian Analytical chemistry 5thEd John Will	lev and
	Sons 1994	iey una
	3 J. Mendham, R.C. Denney, J.D. Barnes, M. Thom	as B
	Sivasankar, Vogel's Textbook of Quantitative Chemical A	nalvsis.
	6thEd., Pearson Education Asia 2009.	<i>j</i> 212,
	4. A. J. Elias. Collection of interesting chemistry exper	iments.
	University press, 2002.	,
	5. R.A. Day & A.L. Underwood, Quantitative Analysis.	6thEd
	Prentice Hall, 2001.	,
	6. J. Kenkel, Analytical Chemistry for Technicians, 3rdEd.	, Lewis
	publishers, 2002.	

Course	1. Students will be able to use different techniques for qualitative
Outcomes:	and quantitative estimation.
	2. Students will be able to interpret spectra and use statistical
	methods to analyse data.
	3. Students will be able to use different techniques for mixture
	separation.
	4. Students will be able to analyse pharmaceutical samples.