Name of the Programme: M.Sc. Part-II (Analytical Chemistry)

Course Code: CHA-602 Title of the course: Advanced Mass Spectrometry

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied analytical chemistry course at M.Sc. P	art I.
for the		
course:		
Course	1. To study various ionisation sources and mass analyser.	
Objective:	2. To introduce tandem mass spectrometry techniques.	
-	3. To learn interpretational aspects of spectral data obtained	d from
	hyphenated techniques.	
Content	1. Ionization methods:	No of
	a. Mass spectrometry: introduction, principle, general	hours
	instrumentation, general interpretation procedure for mass	
	spectra;	15
	b. Gas Phase ionization: electron ionization (EI), chemical	
	ionization (CI), Field ionization and field desorption (FI,	
	FD)	
	c. Particle Bombardment: Fast atom bombardment (FAB),	
	Secondary ion mass spectrometry (SIMS).	
	d. Atmospheric pressure Ionization: electrospray ionization	
	(ESI), atmospheric pressure ionization (APCI).	
	e. Laser Desorption: MALDI.	
	f. Inorganic ionization sources: thermal ionization, Spark	
	source, Glow discharge, Inductively coupled plasma	
	(ICP).	
	g. Problem solving using mass spectrometry.	
	2. Mass analyzers:	15
	a. Characteristics of analysers: nominal mass, mass	
	accuracy, resolving power, resolutions, isotopic	
	composition, numericals to calculate nominal and accurate	
	mass.	
	b. Magnetic, electromagnetic and double focusing	
	c. Single Quadrupole and triple quadrupole	
	d. Time of flight analyzer	
	e. Ion cyclotron resonance analyzer	
	f. Hybrid instrumentation	
	g. Detectors: electron multiplier, photon multiplier, Faraday	
	cup	
	Note: instrumentation, working principles, characteristic	
	features, advantages, practical consideration shall be	
	discussed.	

	3. Hyphenated Techniques:	15
	a. Coupled techniques, Importance of hyphenation of two analytical techniques, Interface and their characteristic features.	
	b. Introduction, principle and instrumentation of following	
	techniques: GC-MS, LC-MS, ICP-MS, CE-MS, TG-MS.	
	c. Tandem mass (MS-MS): Introduction, concepts of tandem	
	mass spectrometry, Ion activation methods.	
	d. Analysis of chromatogram: Total ion chromatogram (TIC),	
	Extracted Ion Chromatogram (XIC).	
	e. Analysis of chemical data of natural product, drugs, etc.	
	Dereplication using hyphenated technique.	
	4. Tandem Mass spectrometry applications:	15
	a. Pharmacokinetic studies: Fate of drug in living organisms,	
	metabolite identification, biotransformation of ziprasidone.	
	b. Tandem MS and fragmentation pattern of following drugs:	
	Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine,	
	amphetamine, Trocade.	
	c. Analysis of biomolecules: Proteins, Peptides,	
	Oligonucleotides, structure and sequence determination	
	using fragmentation, solve problems based on MS/MS	
	data.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assigni	nents /
i cuugogj	presentations / self-study or a combination of some of these can	
	used. ICT mode should be preferred. Sessions should be interaction	
	nature to enable peer group learning.	
References /	1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2 nd Ed, S	pringer
Readings	publisher, 2011.	1 0
0	2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Princip	les and
	Applications, 2 nd Ed, Wiley, 2007.	
	3. R. B. Cole, Electrospray and MALDI Mass Spectr	ometry:
	Fundamentals, Instrumentations, Practicalities and Bio	ological
	Applications, 2 nd Ed, Wiley, 2010.	
	4. J. T. Watson, O. D. Sparkman, Introduction to Mass Spectro	ometry:
	Instrumentation, Applications, and Strategies for Data Interpreta	tion, 4 th
	Ed, Wiley, 2007.	
	5. K. Wanner, G. Höfner, Mass Spectrometry in Medicinal Ch	emistry
	Applications in Drug Discovery, 1 st Ed, Wiley-VCH, 2007.	
	6. M. Kinter, N. E. Sherman, Protein Sequencing and Identification	n Using
	Tandem Mass Spectrometry, 1 st Ed, Wiley, 2000.	
	7. P. James, Proteome Research: Mass Spectrometry (Principle	les and

	 Practice), 1st Ed, Springer publisher, 2000. 8. J. K. Prasain, Tandem Mass Spectrometry-Applications and Principles, InTech publisher, 2012.
Course Outcome:	 Students will be able to explain principle behind different ionizations sources. Students will be able to select mass analysers and ionization sources for analysis of particular type of analyte. Students will be able to deduce structures of simple to moderately complex molecules/biomolecules by combining the spectral data obtained from hyphenated techniques. Students will be able to apply tandem Mass spectrometry for biomolecule analysis.