Name of the Programme: M.Sc. Part-II (Analytical Chemistry)

Course Code: CHA-621 **Title of the course:** Fundamentals of Crystallography

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied M.Sc. Part-I.	
for the		
course:		
Course	1. To introduce basic concepts of crystallography.	
Objective:	2. To impart knowledge of single crystal and powder X-ray diffraction	on
	methods.	
	3. To analyse Materials and understand Structure.	
	4. To familiarize students with various applications of Crystallograp	hy
Content	1. Basics of Crystallography	No of
	a. The Crystalline state, symmetry elements.	hours
	b. Lattices, unit cell, crystallographic directions, planes, point	
	groups and symmetry classes.	10
	c. The Laue classes, the seven crystal systems, Bravais lattices, space groups and International Tables.	
	d. Description of crystal structures, unit cell projections and	
	atomic coordinates, unit cell content.	
	e. Ionic crystals, molecules and molecular crystals, protein	
	crystals, physical properties of crystals.	
	2. Diffraction of X-rays by Crystals:	10
	a. Interaction of X-rays with matter.	
	b. Scattering of X-rays by an electron, atom, atomic scattering	
	factor, temperature factor, scattering by molecule or unit cell.	
	c. Diffraction by crystals, structure factor, Bragg's law, the	
	reflection and the limiting spheres, symmetry in reciprocal	
	space, systematic absences, diffraction intensities.	
	d. Experimental methods in X-ray crystallography: X-ray	
	sources, monochromatization, collimation, and focusing of X-	
	rays.	
	3. Single Crystal X-ray Diffraction:	10
	a. Crystals and their properties: crystallization, growing and	
	choosing crystals, microscopic observation	
	b. Data collection techniques for single crystals, diffractometer	
	geometry, measurement of the integrated intensities, data	
	collection with area detectors,	
	c. Data reduction: Lorentz correction, polarization correction,	
	absorption corrections, radiation damage corrections, relative	
	scaling.	

 d. Solution and refinement of crystal structures: Wilson plot, the heavy atom method, Direct methods, phase determination procedures, figures of merit, e. Completing and refining the structure: difference Fourier method, least-squares method, absolute configuration. f. Introduction to crystallographic softwares (e.g. APEX 4, Olex2 etc) and IUCr validation of the data (CIF) 	
 4. Powder X-ray Diffraction: a. Origin of powder diffraction pattern, position, shape, and intensity of powder diffraction peaks. b. Powder diffractometry: beam conditioning, goniometer design, nonambient powder diffractometry. c. Collecting quality powder diffraction data: sample preparation, data acquisition, quality of data, data processing. d. Determination of unit cell: indexing methods. e. Introduction to the Rietveld method. d. Introduction to powder diffraction softwares for indexing, unit cell refinement (e.g. Winplotr, UnitCell). 	10
 5. Applications of Crystallography: a. Chemistry and Materials science: understanding crystal structures of compounds, alloys, metals, polymers, phase transitions etc. b. Geology, mineralogy, gemology. c. Pharmaceuticals: polymorphs, excipient analysis, active pharmaceutical ingredients. d. Forensics and environmental analysis. e. Nano materials characterization. f. Biomolecules: determination of structures of proteins, nucleic acids and other biological macromolecules. g. Other diffraction techniques: neutron diffraction, thin film, microstructure properties, pair distribution function analysis, etc. 	10
 6. Analysis of Materials and Structural Understanding: a. Characterisation of Solids using diffraction techniques. b. Introduction to databases: powder diffraction files, inorganic and organic crystal structure database, protein data bank etc. c. Inspection of crystals/powders with light microscope. d. Visualization of crystal structures using softwares (e.g. Diamond, VESTA). e. Beyond ideal crystals: crystal twins, modulated structures, quasicrystals. 	10

Dedagegy	Mainter lastress and tetavials Consistent / tame non-one / againments /		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /		
	presentations / self-study or a combination of some of these can also be		
	used. ICT mode should be preferred. Sessions should be interactive in		
	nature to enable peer group learning.		
References /	1. M. Milanesio, G. Zanotti, G. Gilli, M. Catti, H. Monaco, G. Ferraris,		
Readings	G. Artioli, P. Gilli, D. Viterbo, C. Giacovazzo - Fundamentals of		
	Crystallography, 3 rd Ed., Oxford University Press, 2015.		
	2. C. Hammond - The Basics of Crystallography and Diffraction		
	(International Union of Crystallography Texts on Crystallography) 4 th		
	Ed., Oxford University Press, 2015.		
	3. R. West, Solid State Chemistry and Its Applications, 2 nd Ed.; Wiley,		
	2022.		
	4. F. Hoffmann, Introduction to Crystallography, 1 st Ed. Springer, 2020.		
	5. D. Sherwood, Crystals, X-rays and Proteins: Comprehensive Protein		
	Crystallography, 1st Ed. Oxford University Press, 2015.		
	6. A. Hofmann, S. Clokie, Wilson and Walkers Principles and		
	Techniques of Biochemistry and Molecular Biology, 8 th Ed.;		
	Cambridge University Press, 2018.		
	7. V. Pecharsky and P. Zavalij, Fundamentals of Powder Diffraction and		
	Structural Characterization of Materials, 2 nd Ed.; Springer, 2009.		
	8. R. Young, The Rietveld Method, 1 st Ed., Oxford University Press,		
	1995		
	9. W. David, K. Shankland, L. McCusker, C. Bärlocher, Structure		
	Determination from Powder Diffraction Data, 1 st Ed., Oxford		
	University Press, 2006.		
	10. B. He, Two-dimensional X-ray Diffraction, 1 st Ed., Wiley, 2009.		
	11. W. Massa, Crystal Structure Determination, 2 nd Ed., Springer, 2010.		
	12. R. Dinnebier, S. Billinge, Powder Diffraction: Theory and Practice, 1 st		
	Ed., Royal Society of Chemistry, 2008.		
	Ed., Royal Society of Chemistry, 2008.		
Course	1. Student will acquire fundamental concepts of crystallography.		
Outcome:	 Students will gain insights into single crystal and powder X-ray 		
Suconc.	diffraction methods.		
	3. Students will be able to use X-ray diffraction methods for materials		
	3. Students will be able to use X-ray diffraction methods for materials characterization.		
	4. Students will be able to correlate crystal structure and materials		
	properties		