Name of the Programme: M.Sc. Part-I (Biochemistry)

Course Code: CHB-500 Title of the Course: Biomolecules and Bioenergetics

Number of Credits: 4

Effective from AY: 2022-23

Pre-requisites	Students should have graduate level knowledge either in chemical of	or life sciences
for the Course:	or should have qualified change of discipline test.	
Course	1. To develop concepts about structures and functions	of different
Objectives:	biomolecules.	
	2. To understand the reactivity of biomolecules and their role	in metabolic
	pathways.	ation in living
		ation in inving
Content:		No of hours
	1 Introduction to Biomolecules	1
	a Origin aim and scope of Biochemistry	-
	b Introduction to various classes of major biomolecules	
	 Structure and properties of water 	2
	a. Structure and physico-chemical properties of water lonic	-
	product of water	
	b. Importance of water in biological systems.	
	3. Chemical bonding. Stereochemistry and Reactions	7
	a. Properties of covalent bond, non-covalent bonds and their	
	importance in biological systems.	
	b. Brief revision of configurational nomenclature: R & S: D & L: E	
	& Z: cis & trans and syn & anti nomenclature with respect to	
	biomolecules.	
	c. Types of biochemical reactions: oxidation-reduction,	
	condensation, rearrangement, addition, elimination, group-	
	transfer, resonance bond, electrophilic and nucleophilic	
	substitution reactions.	
	4. Structure and Biological functions of biomolecules	20
	a. Amino acids, Peptides and Proteins	
	i. Amino acids: Structure, Classification, physico-chemical	
	properties of amino acids and role of non-protein amino acids.	
	ii. Peptides: peptides of physiological significance, peptide bond.	
	iii. Proteins: primary (importance of primary structure),	
	secondary (alpha-helix, β – structure, β -helix, super secondary	
	structure), tertiary (stabilizing forces, unfolding/refolding) and	
	quaternary structures (e.g.; Haemoglobin).	
	b. Nucleotides and Nucleic acids	
	i. Structure and properties of nucleotides, nucleosides, purine	
	(Adenine, Guanine) and pyrimidine (Cytosine, Thymine, Uracil)	
	bases.	

	ii. Structural features of nucleic acids (DNA & RNA) and their	
	biological functions.	
	c. Carbohydrates	
	i. Structure, stereochemistry, reactions and functions of	
	monosaccharides, disaccharides, polysaccharides.	
	ii. Complex carbohydrates; amino sugars, proteoglycans and	
	glycoproteins.	
	d. Lipids	
	Classification, structure and function of major lipid subclasses -	
	Triacylglycerols, Phospholipids, Sphingolipids, glycolipids,	
	Lipoproteins, chylomicrons, LDL, HDL and VLDL, steroids,	
	prostaglandins and bile acids, rancidity.	
·	5 Bioenergetics and Oxidative Phosphorylation	6
	a Thermodynamics: laws of thermodynamics mechanism of	U
	evergonic and endergonic reactions redox notential high	
	energy compounds ATP structure and significance	
	h Acrobic electron transport and evidative phosphorylation	
	b. Aerobic electron transport and oxidative phosphorylation,	
	redox enzymes of ETC, ATP synthase and mechanism.	24
	6. Metabolism of Biomolecules:	24
	a. Carbonydrate metabolism	
	Regulatory mechanisms, bioenergetics and significance of	
	central pathways of carbohydrate metabolism: Glycolysis, TCA,	
	Pentose phosphate pathway, Entner-Doudoroff pathway,	
	glycolate cycle, Gluconeogenesis, gluconeogenesis from TCA	
	intermediates/ amino acids / acetyl-CoA, glucuronic acid	
	pathway, Utilization of sugars such as lactose, galactose,	
	maltose and of polysaccharides such as starch, glycogen.	
	Biosynthesis of polysaccharides and sugar interconversions.	
	b. Lipid metabolism	
	Oxidation of fatty acids and its energetics: oxidation of saturated	
	and unsaturated (mono and polyunsaturated fatty acids (PUFA),	
	Peroxisomal oxidation of fatty acids (Phytanic acid), Refsum's	
	disease, ketone body formation and their clinical significance,	
	diabetic ketoacidosis, Biosynthesis of fatty acids and regulation,	
	Biosynthesis of triglycerides, cholesterol and phospholipids.	
	c. Amino acid metabolism	
	General reactions of amino acid metabolism - Transamination,	
	decarboxylation, oxidative and non-oxidative deamination of	
	amino acids. Special metabolism of methionine, histidine,	
	phenylalanine, tyrosine, tryptophan, lysine, valine, leucine,	
	isoleucine and polyamines. Urea cycle and its regulation	
	Overview of biosynthetic nathways of amino acids and their	
	regulation: Assimilation of ammonia hiosynthesis of essential	
	regulation, Assimilation of annihoma, prosynthesis of essential	

	and non-essential amino acids, regulation of glutamine
	synthetase and aspartate family of amino acids.
	d. Nucleotides and nucleic acids metabolism
	Purine and pyrimidine nucleotides: biosynthesis and its
	regulation. Deoxyribonucleotides: biosynthesis and regulation.
	Biosynthesis of nucleotide coenzymes. Catabolism of purine and
	pyrimidine nucleotides.
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be used. ICT
	mode should be preferred. Sessions should be interactive in nature to enable peer
	group learning.
References/	1. D. L. Nelson, M. M.Cox, Lehninger Principles of Biochemistry, W.H.
Readings:	Freeman; , 7 th Edition,2017.
	2. D. Voet, J. G. Voet, C. W.Pratt, Fundamentals of Biochemistry, John
	Wiley & Sons Inc. 5 th Edition,2016.
	3. J. MBerg, L Stryer, J. L Tymoczko, G. J Gatto, Biochemistry, W.H Freeman,
	9 th Edition. 2019.
	4. P. Kuchel, S. Easterbrook-Smith, V. Gysbers, J.M. Guss, D.Hancock, J.
	Johnston, A. Jones, J. Matthews, Schaum's Outline of Biochemistry, McGraw-
	Hill Book Co,3 rd Edition,2009.
Course	1. Students will be able to classify different biomolecules based on their
Outcomes:	structure and explain their 3-dimensional arrangement and biological
	functions.
	2. Students will be able to write the metabolic pathways for major
	macromolecules and recognize the chemical changes occurring at each step
	based on the functional groups involved.
	3. Students will be able to compute the energetics involved in metabolic
	pathways in terms of number of ATPs and describe the different regulatory
	mechanisms.
	4. Students will be able to relate certain common diseases to the
	malfunctioning of respective metabolic pathways.