Name of the Programme: M.Sc. Part-I (Biochemistry)

Course Code: CHB-502

Title of the Course: Molecular Biology

Number of Credits: 4

Effective from AY: 2022-23

Pre-requisites	Students should have graduate level knowledge either in ch	nemical or life
for the Course:	sciences or should have qualified change of discipline test.	
Course	1. To introduce the students to the structure of nucleic acids, their folding and	
Objectives:	packaging inside living cells and viruses.	
	2.To acquaint the students with concepts of damage to DN	IA, the repair
	mechanisms initiated by the cell and the expression and	regulation of
	genes in prokaryotes and eukaryotes.	1
Content:		No of hours
	1. Mendelian Genetics	10
	a. Basic concepts of Mendelian genetics: Mendel's	
	Principles, Mendel's experiment, allele, wild-type and	
	mutant alleles, dominant and recessive allele,	
	homozygous and heterozygous, genotype, phenotype.	
	b. Laws of inheritance: Mendel's law of inheritance, Law of	
	segregation, monohybrid cross, test cross, Law of	
	independent assortment, incomplete dominance and	
	codominance, multiple alleles.	
	c. Prediction, expression and probability: predicting blood	
	groups of progeny, lethal alleles, penetrance and	
	expressivity, Probability: predicting outcome of genetic	
	Crosses.	12
	2. Structure and properties Nucleic acidsa. DNA as genetic material: Structure of DNA and RNA,	12
	Types of DNA based on their structure and their	
	importance in cell (A-DNA, B-DNA, Z-DNA), Types of	
	DNA based on the functionality and their importance in	
	cell (Satellite DNA, Palindrome DNA, Repetitive DNA).	
	b. RNA: Types of RNA (mRNA, antisense mRNA, rRNA,	
	tRNA), their structure and functions.	
	c. Functions and properties of DNA: Fundamental	
	functions of DNA, Buoyant density, melting	
	temperature (Tm), DNA reassociation kinetics (Cot	
	curve analysis), DNA methylation and epigenetic effects	
	(Agouti gene methylation, maternal diet and offspring	
	coat colour).	
	3. Genome organization and Packaging	6
	a. Viruses (icosahedral capsid and helical capsids)	
	b. Prokaryotes (supercoiling, nucleosomes and nonhistone	
	proteins)	
	c. Eukaryotes (supercoiling, nucleosomes, histones,	
	chromatin and chromosome).	
	d. Heterochromatin and euchromatin, Importance of	
	structural features of chromosome (telomere,	

I		
	centromere and repetitive sequences), Functions of the chromosomes.	
4. Mo	del organisms and Mechanisms of gene transfer	5
	Escherichia coli as a model prokaryotic organism.	
	Yeast as a model eukaryotic organism.	
	Mechanisms of Gene Transfer: transformation,	
	transduction, conjugation, plasmids (natural, artificial),	
	episomes.	
5. Me	chanisms of DNA damage, repair and recombination	12
a.	Mutations and mutagenic agents: Types of mutations	
	(point mutations, frameshift mutations, forward	
	mutations, reverse mutations, suppressor mutations,	
	transitions and transversions), Role of Mutagenic agents	
	(spontaneous and induced mutagenic agents).	
h	DNA repair mechanisms/ pathways: (Base excision	
D.		
	repair, Mismatch repair, SOS repair, Photoreactivation	
	repair, recombination repair.	
C.	Mechanisms of Genetic recombination: Homologous	
	and site-specific recombination, Role of synaptonemal	
	complex, lamp brush chromosomes, chi sequences, Rec	
	BCD system, Role of Rec A, Ruv C, Holliday junctions.	
6. Flo	w of genetic information and expression of genes in	11
proka	ryotes and eukaryotes,	
Conc	ept of Central Dogma	
a.	Replication: replication of DNA, semi conservative	
	nature of DNA replication.	
b.	Transcription: transcription factors and machinery,	
	formation of transcription initiation complex,	
	transcription activators and repressors, RNA	
	polymerases, capping, elongation, and termination,	
	RNA to proteins (reverse transcription). Post	
	transcriptional modifications: attenuation,	
	riboswitches, alternate splicing, RNA interference, RNA	
	processing, RNA editing, and polyadenylation, RNA	
	transport.	
С.	Translation: structure of Ribosome (eukaryotes and	
	prokaryotes), formation of translation initiation	
	complex, initiation factors and their role in regulation of	
	initiation of translation, elongation and elongation	
	factors, termination, genetic code, aminoacylation of	
	tRNA, tRNA-identity, aminoacyl tRNA synthetase, and	
	translational proof-reading, translational inhibitors,	
	Post translational modification of proteins in	
	prokaryotes and Eukaryotes.	
7. Co i	ntrol of gene expression at transcription and translation	4
level		
a.	Regulation of gene the expression of phages, viruses,	
	prokaryotic and eukaryotic genes.	
	pronaryone and canaryone genes.	1

	 b. Role of chromatin in gene expression and gene silencing. c. Role of Recognition sequences or motifs of gene regulatory proteins, Genetic switches and their role in gene expression. 		
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignments /		
	presentations / self-study or a combination of some of these can also be used.		
	ICT mode should be preferred. Sessions should be interactive in nature to enable		
	peer group learning.		
References/	1. J.D. Watson, Molecular Biology of the Gene. Pearson/Benjamin Cummings,		
Readings:	2013.		
	2. B. Alberts, A. Johnson, Molecular biology of cell. Garland Science, 2014.		
	3. N. Craig, O. Cohen-fix, R. Green, Molecular Biology: Principles of Genome		
	function. Oxford University Press, 2014.		
	 H. Lodish, A. Berk, P. Matsudaira, C.A.Kaiser, M.Krieger, M.P. Scott, L. Zipursky, & J. Darnell, Molecular cell biology. W.H. Freeman, 2008. 		
Course	1. The student will be able to outline and explain the fundamental concepts		
Outcomes:	of genetics like structure and packaging of nucleic material.		
	2. The student will be able to illustrate and explain the mechanisms of DNA		
	damage, repair and recombination.		
	3. The student will be able to describe and discuss the process of expression		
	of genes in prokaryotes and eukaryotes.		
	4. The student will gain the knowledge of basic molecular processes that occur within the cell.		