Name of the Programme: M.Sc. Part-I (Biochemistry)

Course Code: CHB-505

Title of the Course: Analytical Biochemistry-II

Number of Credits: 4

Effective from AY: 2022-23

Pre-requisites	Students should have graduate level knowledge either in ch	nemical or life
for the Course:	sciences or should have qualified change of discipline test.	
Course	1. To Introduce various electro-analytical, imaging a	ind spectral
Objectives:	characterisation techniques for analysis.	
	 To evaluate the utility of various analytical techniques as a q quantitative tool. To develop concepts in techniques and instruments 	
	macromolecule structure determination and other technic tracers for metabolic pathways.	-
	· · · ·	
Content:		No. of hours
	1. Automation in biochemistry	4
	a. Definition and history.	
	b. Discrete analysers and flow analysis.	
	c. Advantages and disadvantages of automation.	
	2.Electroanalytical methods	7
	a. Introduction to ion selective and gas sensing electrodes and	
	their applications.	
	b. Introduction to potentiometry, conductometry,	
	coulometry and voltammetry.	
	c. Introductions to biosensors.	
	3. Optical methods of analysis	12
	a. Theory, instrumentation and application of nephelometry.	
	b. Theory, instrumentation and application of turbidimetry.	
	c. Theory, instrumentation and application of UV-visible	
	<mark>spectrophotometry.</mark>	
	d. Theory, instrumentation and application of fluorometric	
	analysis.	
	e. Theory, instrumentation and application of flame emission	
	photometry and Atomic absorption spectrophotometry.	11
	 4. Microscopy and Bioimaging a. Imaging living cells and tissues and measuring cellular 	11
	dynamics. Theory of	
	microscopy, basic aspects of compound microscope.	
	b. Light microscopy: Theory, instrumentation and applications	
	of bright field, dark field,	
	phase-contrast, inverted microscopy.	
	c. Principle and application of fluorescence microscopy,	
	confocal scanning microscopy,	
	epifluorescence and immuno-fluorescence microscopy.	

	d Electron microscony, Theory, instrumentation and	
	d. Electron microscopy: Theory, instrumentation and applications of atomic force	
	microscopy (AFM), scanning electron microscopy (SEM),	
	transmission electron	
	microscopy (TEM). Optical tweezers, photography.	
	5. Radioisotope techniques	8
	a. Nature of radioactivity and its detection, measurement of	0
	radioactivity,	
	Disintegration kinetics.	
	b. Radio-activity counters and radioanalysis – GM Counter,	
	Scintillation Counter,	
	Isotope dilution analysis.	
	c. Theory and application of Autoradiography	
	d. Theory and application of radiorespirometry.	
	e. Tracer techniques for metabolic pathways.	
	f. Safety measures in handling radioisotopes.	
	6.Spectroscopic techniques for structure determination of	12
	biomolecules:	
	a. Principles, application and profile analysis of: FTIR, NMR,	
	ESR, Single crystal X-ray	
	diffraction, optical rotatory dispersion, circular dichroism.	
	b. Structure elucidation of metabolites using combined	
	spectroscopic data.	
	7. Mass Spectrometry:	6
	a. Principle, components, working and applications of mass	
	spectrometer.	
	b. Different types of ionization methods used in mass	
	spectrometer (CI, EI, ESI, FAB).	
	c. Different types of mass analysers used in mass	
	spectrometers (magnetic sector, ion trap, quadrupole),	
	MALDI-MS, MALDI-TOF-MS, ICP-MS.	
	d. Structural information by tandem mass spectrometry.	
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /a	assignments /
	presentations / self-study or a combination of some of these car	n also be used.
	ICT mode should be preferred. Sessions should be interactive in na	ature to enable
	peer group learning.	
References/	1. Wilson, K.; Walker, J.; Principles and Techniques of Practical	Piochomistry:
-	Cambridge University Press; 2010,7 th Edition.	biochemistry,
Readings:	2. Homes, D. J.; Peck, H.; Analytical Biochemistry; Pearson Educ	ation Limited.
	1998, 3 rd Edition.	
	3. de Hoffmann, E.; Stroobant, V.; Mass Spectrometry: P	rinciples and
	Applications; John Wiley & Sons Ltd; 2007, 3 rd Edition.	
	4. Christian, G. D.; Dasgupta, P. K.; Schug, K. A.; Analytical Ch	emistry: John
	Wiley & Sons; 2013, 7 th Edition.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	5. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrume	ental Analysis:
	Cengage Learning; 2016,7 th Edition.	
	6. Parakhia, M. V.; Tomar, R. S.; Patel, S.; Golakiya, B. A.; Molecul	ar Biology and
	Biotechnology: Microbial Methods; New India, 2010.	0,
Course	1. Students will be in a position to explain the principle	es of various
Outcomes:	techniques.	
L		

2. Students will be able to differentiate between various analytical		
techniques based on their theory and sensitivity achieved.		
3. Students will be able to choose between various techniques of structure		
elucidation based on the information desired and interpret the data obtained to a fair level.		
4. Students will be able to apply the knowledge of various techniques for designing experiments in research and development.		