Name of the Programme: M.Sc. Part-I (Biochemistry)

Course Code: CHB-507 Title of the Course: Industrial Biochemistry

Number of Credits: 4

Effective from AY: 2022-23

Pre-requisites	Students should have graduate level knowledge either in ch	emical or life
for the Course:	sciences or should have qualified change of discipline test.	
Course	1. To Introduce various techniques used for handling and	processing of
Objectives:	biomolecule.	
-	2. To evaluate the utility of various techniques as a qualitative ar	nd quantitative
	tool for handing biomolecule on industrial scale.	·
	3. To develop the concepts for managing biomolecules at comm	nercial scale.
Content:		No of hours
	1. Fermentation and bioreactors	16
	a. Introduction to Fermentation: Industrial fermentation and	
	its range, advantages of industrial fermentations over	
	chemical manufacturing process, types of fermentation	
	processes: submerged and solid-state fermentation, modes of	
	fermentation: batch,fed-batch and continuous, microbial	
	growth curve and its use in designing modes of fermentation.	
	b. Fermenters: Basic components of a fermenter, types of	
	fermenters with their advantages and disadvantages, solid	
	state termentation, anaeropic termentation.	
	c. Significance and control of various fermentation	
	sterilisation aeration and agitation Industrial media and the	
	nutrition of industrial organisms, scale up and scale down of a	
	fermentation process, rheological properties of fermenter.	
	Online and offline monitoring, computerization of fermenter	
	operation.	
	D. Downstream processing: Steps of downstream processing:	
	Details of removal of insolubles, disruption of cell,	
	isolation/extraction/purification, recovery and final product	
	isolation of fermentation products	
	2. Food technology	<mark>16</mark>
	a. Characteristics of industrial microorganisms; strain	
	improvement; use of auxotrophic mutants; cultivation of	
	microorganisms.	
	b. Introduction to processed foods: Introduction about	
	microorganisms involved in it	
	c. Industrial production of few food products	
	i. Production of foods made from milk: Cheese Probiotics	
	voghurt/ curd	
	ii. Production of alcohol-based fermentation products: wine	
	beer, vinegar.	

	iii. Production of oriental fermented foods: Soy sauce, tofu, tempeh.	
	v. Production of ethnic fermented foods and beverages of	
	<mark></mark>	9
	3.Industrial production of biochemically important products	5
	a. Production of industrially important proteins.	
	i. Industrially important enzymes - amylase / protease /	
	pectinase / lipase.	
	b. Production of industrially important carbohydrates.	
	i. Manufacturing and refining of cane sugar, pectin/cellulose	
	ii. Manufacturing of polysaccharides. Plant polysaccharide	
	(Gum Arabic), microbial polysaccharides, modified	
	carbohydrates – modified starches, modified celluloses	
	c. Production of industrially important lipids.	
	i. Extraction and refining of vegetable oils and animal fats in	
	general.	
	ii. Extraction and applications of chlorophyll, carotene,	
	lycopene, curcumin, and essential oils.	-
	4.Production of pharmaceuticals, nutraceuticals and	9
	biochemicals	
	a. Production of Antibiotics: penicillins/ streptomycins.	
	b. Production of Vitamins: B12/ascorbic acid.	
	c . Production of Amino acids: lysine/glutamine.	
	d. Production of Alconol: ethanol.	
	e. Production of Organic acid: citric acid/ factic acid.	F
	2. Production of Pakor's voast	5
	h. Single cell proteins/Spirulina	
	c Bacterial insecticides	
	d. Mushrooms.	
	6. Immobilized Biocatalysts: Enzymes and Cells	5
	a. Bationale for immobilizing enzymes and whole cells.	5
	h Methods for enzyme and whole cell immobilization	
	supports and their selection	
	Departies of investigated biastal at	
	c. Properties of immobilized biocatalysts.	
	d. Industrial applications of immobilized biocatalysts.	
Pedagogy:	Mainly lectures and tutorials Seminars / term papers //	assignments /
1 Cuugosy.	presentations / self-study or a combination of some of these ca	n also he used
	ICT mode should be preferred. Coscions should be interactive in pr	n also be used.
	ici mode snould be preferred. Sessions snould be interactive in na	ature to enable
	peer group learning.	-
References/	1. Okafor N., Modern Industrial Microbiology and Biotechno	ology, Science
Readings:	Publishers, 2007, 4 th Edition.	
	2. Casida, JR L. E.; Industrial Microbiology, New Age	International
	Publishers, 2019, 2 ^{rre} Edition.	authority CDC
	5. Clarke, w.; Biotechnology: Industrial Microbiology a I	EXTROOK, CBS
	A Tamangi D. Ethnic Formented Foods and Powerssos of	India: Science
	4. Tamangi F., Eurine Fermenteu FOOUS and Beverages Of History and Culture Springer Nature 2020	mula. Science
1		

	 Frazier W. C. and Westhoff D. C., Food Microbiology –Tata McGraw Hill Publishers, 1995. 		
	 Stanbury P. F., Whitakar A. and Hall S.; Principles of fermentation technology, Butterworth-Heinemann, 1995, 2nd Edition. 		
	7. Kuila, A., Sharma, V.; Principles and Applications of Fermentation		
	Technology, Wiley-Scrivener Publishing, 2019, 1st Edition.		
Course	1. Students will be able to understand the principles of biochemistry techniques		
Outcomes:	used in various settings of industrial processes.		
	 Students will be able to apply the principles of techniques learned in biochemistry in various settings of industrial processes. 		
	Students will be able to develop strategies for production of various types of biomolecules.		
	 Students will be capable to handle various tools used for production and recovery of products on industrial site. 		