Name of the Programme: M.Sc. Part-I (Biochemistry)

Course Code: CHB-521

Title of the Course: Practical Course in Biochemistry-I

Number of Credits: 4

Effective from AY: 2022-23

Pre-requisites	Students should have graduate level knowledge either in ch	emical or life	
for the Course:	sciences or should have qualified change of discipline test.		
Course	1. To understand principles, theory and calculations of each experiment.		
Objectives:	2. To gain hands on preparation of all the solutions and to standa		
	solutions individually.		
	3. To develop basic understanding and skills of various in:	struments an	
	techniques used for analysing biomolecules.		
Content:		No of hours	
	1. Biomolecules and Bioenergetics (Any six)	<mark>30</mark>	
	a. Estimation of reducing sugars by DNSA method.		
	b. Colorimetric methods for protein estimation by Biuret		
	method.		
	c. Colorimetric methods for protein estimation by Folin-		
	Ciocalteau methods.		
	d. Estimation of total sugars by anthrone method.		
	e. Estimation of amino acids (ala, tyr, trp) and protein by UV-		
	Vis spectroscopy.		
	f. Estimation of nucleic acid by UV-Vis spectroscopy.		
	g. Estimation of DNA by diphenylamine method.		
	h. Estimation of RNA by orcinol reaction.		
	2. Analytical Biochemistry-I (Any six)	<mark>30</mark>	
	a. Calibration of pH meter using standard buffer solutions		
	and determination of pH of given unknown solution		
	b. Preparation of acetate and phosphate buffer of different		
	pH values using calibrated pH meter.		
	c. Separation of mixtures of compounds (organic		
	compounds including biomolecules) based on their		
	chemical nature using solvent extraction.		
	d. Separation of lipids by thin layer chromatography.		
	e. Separation of mixtures of compounds (organic		
	compounds including biomolecules) by thin layer		
	chromatography.		
	f. Column chromatographic separation of mixtures of		
	compounds (organic compounds including biomolecules).		
	g. Separation of amino acids by paper chromatography.		
	3. Molecular Biology (Any six)	<mark>30</mark>	
	a. Preparation and maintenance of microbial culture.		
	b. Isolation of genomic DNA of bacterial cells.		

	- Estimation of executive and exactly of DALA I]
	c. Estimation of quantity and purity of DNA by	
	spectrophotometry.	
	d. Agarose gel electrophoresis of bacterial DNA.	
	e. PCR amplification of a specific gene using genomic DNA	
	as a template.	
	f. Agarose gel analysis of PCR product to determine	
	amplicon size.	
	g. Isolation of plasmid DNA from microbial cells.	
	h. Agarose gel electrophoresis of plasmid DNA.	
	4. Cell Biology (Any six)	30
	a. Use of aseptic techniques of sterilization and disinfection	
	in microbial culture.	
	b. Isolation of microbial species from an environmental	
	sample such as soil/water.	
	c. Cell counting and viability of fungal/bacterial cells via	
	spread plating.	
	d. Primary identification and characterization of bacterial/	
	fungal cells via colony characterization on solid media.	
	e. Determining the Gram character of a bacterial species via	
	Gram's staining technique.	
	f. Isolation of tissue, culturing and maintenance of cell lines.	
	g. Microscopic examination and cell counting, viability	
	testing using a haemocytometer.	
	h. Surface sterilization of plant material, excision, aseptic	
	tissue transfer	
	i. Induction of callus using plant explant and	
	micropropagation.	
Pedagogy:	 Prelab exercises / assignments / presentations / lab hand-out or a	combination
Peuagogy.		
	of some of these. Sessions shall be interactive in nature to enable	le peer group
	learning.	
References/	1. Wilson K, Walker J; Principles and Techniques of Practical	Biochemistry;
Readings:	Cambridge University Press; 2010; 7 th Edition	
	2. Sawhney, S. K., Singh, R.; Introductory Practical Biochen	nistry; Narosa
	Publishing House; 2005.	
	3. Freshney, I. R.; Culture of Animal Cells: A Manual of Basic T	Fechnique and
	Specialized Applications; Wiley-Blackwell; 2016; 7 th Edition.	
	4. Kumar, D. K.; Plant tissue culture; New Central Book Age	ncy; 2008; 1 st
	edition.	
Course Outcomes	1. After learning the biomolecules and bioenergetics unit of	the practical
	students will be able to skilfully handle biomolecules. Studen	ts will be able
	to quantify biomolecules with appropriate methods.	
	2. With Analytical Biochemistry-I part of this practical, student	s will be able
	to choose between the separation techniques and carry out se	
	purification of biomolecules.	-
	3. Molecular Biology unit of the practical will train the students	in techniques
	involved in genomic DNA isolation and PCR amplification for its use in	
	molecular research.	
	4. In the Cell Biology part of the practical, the students wi	ll be able to
	demonstrate the various cell culture techniques needed	
	biological research laboratory.	