Name of the Programme: M.Sc. Part-I (Biochemistry)

Course Code: CHB-522

Title of the Course: Practical Course in Biochemistry-II

Number of Credits: 4

Effective from AY: 2022-23

Pre-requisites	Students should have graduate level knowledge either in c	hemical or life
for the Course:	sciences or should have qualified change of discipline test.	
for the Course: Course Objectives: Content:	 Students should have graduate rever knowledge entremmet sciences or should have qualified change of discipline test. To provide basic knowledge of environmental pollutio environmental pollutants and control measures. To introduce various experimental techniques for environmental samples. To impart skills in isolation and analysis of bioactive co- plants. To acquaint the students with various food adulterants and methods of their analysis. Microbial Techniques (Any six) Laboratory safety protocols and Preparation of media and sterilization techniques. Isolation and enumeration of bacterial and fungal cultures from various environmental samples. Identification of microbial isolates: Morphological and biochemical identification technique d. Gram staining in bacteria. 	on, effects of analysis of ompounds in and safety No of hours 30
	 e. Determinations of total viable count. f. Determination of efficacy of cell disruption by sonication. g. Density gradient separation of cell biomolecules. h. Study of bacterial growth curve. 2. Analysis of bioactive compounds from plants (Any six) a. Extraction and estimation of betacarotene from fruits. b. Extraction and estimation of folic acids from 	30
	 vegetables. c. Extraction and estimation of lycopene from tomatoes. d. Extraction and estimation of astaxanthene from grapes. e. Separation of plant pigments using column chromatography. f. Steam distillation for extraction of essential oils. g. Determination of starch in plant tissues. h. Estimation of mineral contents in pulses by ashing method. 	
	 3. Environmental analysis (Any six) a. Estimation of acidity, alkalinity of environmental water samples using titrimetry. b. Estimation of nitrate and total organic carbon using UV-Vis spectrophotometry. c. Estimation of total dissolved solids (TDS) by gravimetric determination. 	<mark>30</mark>

	d. Estimation of nitrate using cadmium reduction column		
	method.		
	e.Estimation of total phosphorus using		
	spectrophotometric method.		
	f. To estimate total suspended solids (TSS) using the filter		
	paper method.		
	g. Isolation of xenobiotic degrading bacteria by selective		
	enrichment.		
	h. Calcium analysis by ethylenediaminetetraacetic acid		
	(EDTA) titration.		
	4. Food safety analysis. (Any six) 3	80	
	a. Study of sterilization techniques used in food safety.		
	b. Screening and enumeration of spoilage bacteria from		
	food samples.		
	c. Study of spollage fungi isolated from fruit samples.		
	d. Assessing the quality of raw milk vid MBRT test.		
	e. Determination of total viable count in prepared (ready		
	to eat) 1000 sample.		
	vollow/ chilli powdor, congored)		
	g. Testing the adulteration (rancidity in oils		
	h Assessment of surface sterilization using swab and rinse		
	method		
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /as	signments /	
	presentations / self-study or a combination of some of these	can also be	
	used. ICT mode should be preferred. Sessions should be interact	ive in nature	
	to enable peer group learning.		
References/	1. K. Wilson, J. Walker, Principles and Techniques of	of Practical	
Readings:	Biochemistry; Cambridge University Press, 7 th Edition,2010	Э.	
	2. S. K. Sawhney, R. Singh, Introductory Practical Biochemis	stry, Narosa	
	Publishing House, 2005.		
	3. B. SMT and B. Poornima B, Food Science & Quality Contr	rol, Centrum	
	Press First , 1 st Edition, 2014.		
	4. A. Y. Sathe, A first course in Food Analysis. New Age Interr	national Pvt.	
	Ltd.,, 1 st Edition.1999.		
Course	1. Students will be able to extract a bioactive compound f	rom plants	
Outcomes:	and perform a quantitative analysis.		
	2. Students will be in position to use different techniques for		
	qualitative and quantitative analysis of environmental samples.		
	5. Students will be able to identify adulterants and pathogens in food.		
	4. Students will be able to explain the origin and harmful toxic chemicals in the environment	r enects of	