Name of the Programme: M.Sc. Part-I (Biochemistry)

Course Code: CHB-523 Title of the Course: Practical Course in Biochemistry-III

Number of Credits: 4

Effective from AY: 2022-23

Pre-requisites	Students should have graduate level knowledge either in ch	nemical or life	
for the Course:	sciences or should have qualified change of discipline test.		
Course	This course develops basic understanding and skills of various techniques and		
Objectives:	instruments in biochemistry research, Immunology and Environm	iental science.	
Content:		No of hours	
	1. <mark>Enzymology (Any six)</mark>	<mark>30</mark>	
	a. Assay of enzyme activity, rate of reaction.		
	b. Optimization of parameters for enzyme activity.		
	c. Determination of specific activity of enzyme.		
	d. Determination of Km, Vmax.		
	e. Screening of microbes for production of enzymes		
	(amylases, cellulases).		
	f. Purification of enzyme by salting-out using ammonium		
	sulphate.		
	g. Dialysis of the precipitated enzyme.		
	h. Purification of enzyme by Gel filtration.		
	i. Determination of fold purification, percentage recovery		
	of protein.		
	j. Molecular weight determination of the enzyme by SDS-		
	PAGE.		
	2 Analytical Biochomistry – II (Any six)	20	
	a. Visualization of cells by Light microscopy.	50	
	b. Visualization of cells by Phase contrast microscopy.		
	c. Verification of Beer lambert law using biomolecules or		
	organic compounds.		
	d. Qualitative analysis of any one of the given amino acids		
	or organic compounds using calorimetry.		
	e. To perform UV-Visible spectroscopic studies to		
	determine extinction coefficient of different organic		
	compounds including biomolecules. (Tryptophan,		
	Tyrosine, Methionine, Proline, Arginine, Cysteine,		
	Cystine, Histidine).		
	f. Calibration of spectrofluorometer using quinine sulphate.		
	g. Analysis of biomolecule/ organic molecule using GC.		
	h. Analysis of biomolecule/ organic molecule using IR.		
	i. Analysis of biomolecule/ organic molecule NMR.		
	j. Analysis of biomolecule/ organic molecule LC-MS.		

	k. Elucidation of structure of cellular metabolites using IR,	
	NMR and Mass profiles.	
	3. Immunology and Immunotechniques (Any six)	30
	a. Agglutination assays.	
	I. Haemaggiutination: Determination of ABU and Kn blood	
	ii Latex head agglutination: Rheumatoid Arthritis factor	
	determination	
	b. Immunodiffusion assays.	
	i. Single Immunodiffusion.	
	ii. Double Immunodiffusion: Ag-Ab pattern and Antibody	
	titration.	
	c. VDRL test.	
	d. Widal test: Slide and tube method.	
	e. Rapid tests.	
	i. Malarial antigens Pv/Pf.	
	ii. Dengue IgM and IgG antibodies.	
	III. Hepatitis HBSAg.	
	T. ELISA: DOL-ELISA MELNOO.	
	b. Determination of Immunoglobulins	
	i Precipitation of antibodies with $(NH_4)_2 SO_4$	
	ii. Determination of antibody concentration.	
	iii. Separation and visualization of immunoglobulins by SDS	
	PAGE.	
	4. Industrial biochemistry (Any six)	30
	a. Production of wine and monitoring of sugar reduction during	
	the fermentation	
	b. Production of wine and monitoring of alcohol production	
	during fermentation	
	c. Production of vinegar and estimation of acetic acid	
	d. Isolation and screening of probiotics	
	e Study of fermentation process of milk to curd by microscopic	
	observation and monitoring of nH	
	f Study formentation of deca batter and monitor pl and	
	r. Study refinentation of dosa batter and monitor pH and	
	microbial load in given dosa batter samples	
	g. To perform comparative study of rheology of substrate	
	solutions and fermentation broth (any Indian fermentation	
	products (Idli/ dosa)	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a	combination
	of some of these. Sessions shall be interactive in nature to enable	peer group
	learning.	
References/	1. Berg, J.M., Stryer, L., Tymoczko, J., Gatto, G., Biochemistry	<i>,</i> WH
Readings:	Freeman, 2019, 9 th Edition.	
	2. Prescott, H. Laboratory exercise in Microbiology, MacGrav	v-Hill
	Companies, 2002, 5 th Edition.	

	3. Vogel's Text book of Quantitative Inorganic Analysis, Pearson Education,
	Asia, 2000, 6 th Edition.
	4. Owen, J.; Punt,J.; Stranford, S.; Patricia, J.; Kuby Immunology, WH
	Freeman and Company, 2012, 8 th Edition.
Course	1. Enzymology part of this practical will impart skills on isolation of enzymes
Outcomes:	from living cells, their purification and understanding their substrate
	interactions.
	2. From the Analytical Biochemistry-II part of this practical, students will be
	able to explain the principle and working of basic instruments in
	analytical laboratories and interpret spectral data to elucidate structures
	of certain secondary metabolites.
	3. From the Industrial Biochemistry part of this course, students will
	develop the skills required for production and analysis of various
	industrially important metabolites.
	4. From the Immunology and Immunotechniques unit of this practical
	students will be able to evaluate and design various techniques in
	Immunological research.