Name of the Programme: M.Sc. Part-I (Inorganic Chemistry)

Course Code: CHI-501 **Title of the course:** Chemistry of Coordination & Organometallic

Compounds

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites	Students should have studied Inorganic chemistry courses a	t M Sc
for the	Chemistry in semester I	
course:		
	1. To make understand fundamentals of coordination and organ	metallic
Course Objective:	 chemistry. 2. To gain the knowledge on structural aspects of compounds. 3. To make understand bonding using various models. 4. To correlate spectroscopic and magnetic properties with bonding mode 5. To develop a skill of interpretation of magnetic and spectroscopic prop 6. To understand fundamental concepts of inorganic chemistry mechanisms. 7. To provide knowledge on applications of organometallic component homogenous catalysis. 	els. berties. reaction bunds in
Content:	1. Electronic structure of coordination compounds	No of
	Basic introduction to bonding theories:	hours
	a. Valence Bond theory & its utility, limitations of VBT.	12
	b. Crystal field theory and its uses in: i) Octahedral	
	compounds; ii) tetrahedral compounds; iii) square-planar	
	compounds and other geometries; iv) tetragonally distorted	
	compounds (Jahn-Teller Effect); v) octahedral vs	
	tetrahedral; vi) Evidences showing covalency to the M-L	
	bonds.	
	c. Molecular orbital theory (MOT): σ & π -bonding in	
	octahedral, tetrahedral, square planar compounds.	
	2. Spectra and magnetic studies of coordination compounds	12
	a.(i) Electronic spectra of atoms, (ii) Electronic spectra of	
	complexes; Orgel diagrams, correlation diagrams, T-S	
	diagrams examples and problem solving, (iii)	
	Charge-transfer bands; (iv) Selection rules and intensities,	
	(v) Luminescence.	
	b. Vibrational spectra of coordination compounds.	
	c. Magnetic studies: cooperative magnetism, basic concepts of	
	magnetic properties: diamagnetism, paramagnetism,	
	ferromagnetism, antiferromagnetism, temperature	
	dependent magnetism, Curie law, Curie Weiss Law; spin	
	cross over phenomenon.	
	3. Inorganic reaction mechanisms	12

	chelate and macrocyclic effects; Steric effects and electron delocalization.b. Ligand substitution reactions and mechanisms: Rates of	
	 b. English substitution reactions and incentinistic. rates of ligand substitution; The classification of mechanisms; Ligand substitution in square-planar complexes: The nucleophilicity of the entering group; The shape of the transition state. Ligand substitution in octahedral complexes: Rate laws and their interpretation; The activation of octahedral complexes; Base hydrolysis; Stereochemistry; Isomerization reactions. C. Redox reactions: The classification of redox reactions; The inner-sphere mechanism; The outer-sphere mechanism. d. Photochemical reactions: Prompt and delayed reactions; d–d and charge-transfer reactions; Transitions in metal–metal 	
	bonded systems.	24
	 4. Organometallic chemistry of d-block elements a. Stable electron configurations; Electron count preference; Electron counting and oxidation states. 	24
	 b. Ligands: Carbon monoxide, Phosphines, Hydrides and dihydrogen complexes, η¹-Alkyl, -alkenyl, -alkynyl, and -aryl ligands, η²-Alkene and -alkyne ligands, Nonconjugated diene and polyene ligands, Butadiene, cyclobutadiene, and cyclooctatetraene, Benzene and other arenes, The allyl ligand, Cyclopentadiene and cycloheptatriene, Carbenes, Alkanes, agostic hydrogens, and noble gases, Dinitrogen and nitrogen monoxide. c. Compounds: <i>d</i>-Block carbonyls, Metallocenes, Metal–metal bonding and metal clusters. d. Reactions: Ligand substitution, Oxidative addition and reductive elimination, σ-Bond metathesis, 1,1-Migratory insertion reactions, 1,2-Insertions and β-hydride eliminations and cyclometallations. 	
	e. Catalysis: general concepts, catalytic cycle for isomerization of prop-2-en-l-ol to prop-1-en-l-ol, Alkene metathesis, hydrogenation of alkenes, hydroformylation, Wacker oxidation of alkenes, Asymmetric oxidations, Palladium catalyzed C-C bond forming reactions, methanol carbonylation (Mongento acetic acid process)	
Pedagogy:	carbonylation (Monsanto acetic acid process). Mainly lectures and tutorials. Seminars / term papers /assignm presentations / self-study or a combination of some of these can used. ICT mode should be preferred. Sessions should be interact nature to enable peer group learning.	also be

r		
References /	1. P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller & F. A. Armstrong	
Readings:	2010, Shriver & Atkins' Inorganic Chemistry, 5th Ed., Oxford University	
	Press, 2010.	
	2. J. E. Huheey, E. A. Keiter& R. L. Keiter, Inorganic Chemistry: Principles of	
	structure and reactivity, 4 th Ed.;Pearson, 2014.	
	3. J. D. Lee, Concise Inorganic Chemistry, 5 th Ed, Chapman and Hall, 1996.	
	4. F. A. Cotton, G. Wilkinson & P. L. Gaus, Basic Inorganic Chemistry, 3 rd Ed.;	
	John Wiley, 1995.	
	5. F. A. Cotton & G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed. (4 th &	
	5th Eds. preferred); Wiley Eastern, New-Delhi, 1984.	
	6. D. Banerjee, Coordination Chemistry, 1st Ed.; Tata McGraw-Hill, New	
	Delhi, 1994.	
	7. N. N. Greenwood & A. Earnshaw, Chemistry of the Elements, Pergamon	
	Press, Exeter, 1984.	
	8. G. Rodgers, Introduction to coordination, solid state, and	
	descriptiveInorganic chemistry, 1st Ed.; McGraw-Hill, 1994.	
	9. R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East West	
	Press Pvt. Ltd., 2017	
	10. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson, 2004	
Course	1. Students will be able to understand the electronic structure of coordination	
outcomes:	and organometallic compounds.	
	2. Students will be well equipped with knowledge of CFT and MOT	
	3. Students will be in position to understand the magnetic and electronic	
	properties.	
	4. Students will be able to acquire skill on interpretation of electronic and IR	
	spectra of inorganic compounds	
	5. Students will be able understand concepts of inorganic reactions &	
	mechanisms.	
	6. Students will be aware of applications of organometallic compounds in	
	industrial processes.	