Name of the Programme: M. Sc -I (Inorganic Chemistry)

Course Code: CHI-504 **Title of the course:** Concepts in Inorganic Chemistry

Number of Credits: 04

Effective from AY: 2022-23

Prerequisit es for the course:	Students should have studied Inorganic chemistry courses at Chemistry in semester I	t M.Sc.
Course Objective:	 To gain knowledge in selected topics in inorganic chemistry and study the applications of inorganic compounds in selected areas. To learn in details about the s-block elements and their compounds. To understand the concepts in acid-base reactions in the Inorganic chemistry. To gain knowledge about atomic stability and nuclear reactions. To study the importance of metal ions in the field of medicinal chemistry. 	
Content	 1. s-Block elements and their compounds a. Hydrogen and hydrides; Electronic structure, position in periodic table, abundance, preparation, properties, isotopes, ortho and para hydrogen. Classification of hydrides, preparation & properties of hydrides; hydrogen ion, hydrogen bonding and its influence on properties. b. Group 1 elements; Introduction, abundance, extraction, physical and chemical properties, solubility and hydration, solutions of metal in liquid ammonia, complexes, crowns and cryptands, electrides, alkalides, difference between lithium and the other group 1 elements; Introduction, abundance, extraction, physical and chemical properties, solutions hip between Li and Mg. c. Group 2 elements; Introduction, abundance, extraction, physical and chemical properties, solutions of metal in liquid ammonia, complexes, anomalous behaviour of beryllium, difference between beryllium and the other group 2 elements, diagonal relationship between Be and Al, preparation and properties of Grignard reagent. 	No of hours 17
	 2. Inorganic medicinal chemistry a. Anticancer agents; Platinum and Ruthenium complexes as anticancer drugs, Cancerchemotherapy, phototherapy, radiotherapy using borane compounds. b. Chelation therapy. c. Gadolinium and technetium complexes as MRI contrast agents, X-ray contrast agents. d. Anti-arthritis drugs. e. Anti-bacterial agents (Ag, Hg, Zn and boron compounds). f. Antiseptic and anti-biotic. g. Deodorants and anti-perspirants. 	16

	2 Chamistury of vadia active alamenta
	3. Chemistry of radioactive elements
	a. Atomic nucleus; Classification of nuclides and nuclear
	stability.
	b. Review of Nuclear models.
	c. Radioactivity, Decay processes and decay energy, half-life of
	radioactive elements.
	d. Nuclear reactions; Nuclear fission and fusion processes.
	e. Nuclear Reactors; Nuclear reactor components and functions,
	Q values for nuclear reactions.
	f. Detection and measurement of activity; Radiation detection
	principles.
	g. Physical and Chemical separation techniques of radioactive
	elements.
	h. Radio-analytical techniques, Activation analysis.
	i. Nuclear waste management.
	j. Applications of radioactivity.
	4. Acids and Bases 12
	a. Brønsted acidity; Proton transfer equilibria in water, Solvent
	levelling, The solvent system definition of acids and bases,
	Characteristics of Brønsted acids, Periodic trends in aqua acid
	strength, Simple oxoacids, Anhydrous oxides, Polyoxo
	compound formation, Nonaqueous solvents.
	b. Lewis acidity; Examples of Lewis acids and bases, Group
	characteristics of Lewis acids.
	c. Reactions and properties of Lewis acids and bases; The
	fundamental types of reaction, Hard and soft acids and bases,
	Thermodynamic acidity parameters, Solvents as acids and bases.
	d. Applications of acid-base chemistry, Superacids and
	superbases, Heterogeneous acid-base reactions.
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
References	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong,
/ Readings	Shriver & Atkins Inorganic Chemistry, 5 th Ed.;Oxford Publications,
	2009.
	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, Inorganic
	Chemistry: Principles of Structure & Reactivity, 4 th Ed.;Pearson,
	3. F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inorganic Chemistry,
	3 rd Ed.; Wiley, 2008.
	4. J. D. Lee, Concise Inorganic Chemistry, 5 th Ed.;Wiley, 2008.
	5. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed.;
	Wiley, 1984.

	6. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements,		
	Pergamon Press, 1 st Ed.; 1984.		
	7. A. G. Sykes, Advances in Inorganic Chemistry, UK Ed.; Academic		
	Press Ltd., 1991.		
	8. H. J. Arnikar, Essentials of Nuclear Chemistry, 4 th Revised Ed.;		
	New Age Intl.Publishers, 2011.		
	9. G. Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller, Nuclear		
	& Radiochemistry, 3 rd Ed.; John Willey & Sons, 1981.		
	10. K.A. Strohfeldt, Essentials of Inorganic Chemistry, Ist Ed.; John		
	Willey & Sons, 2015.		
	11. G.R. Choppin, J-O. Linjenzin, Radiochemistry and Nuclear		
	Chemistry, 2 nd Ed.; Butterworth-Heinemann Ltd, 1995.		
	12. R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East		
	West Press Pvt. Ltd., 2017		
	13. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson,		
	2004		
	1. Stadanta millio able te contain the aboviation of a black 1. 1. (
	1. Students will be able to explain the chemistry of s-block elements.		
	2. Students will be able to explain fundamentals of inorganic medicinal		
Course	chemistry.		
outcomes:	3. Students will be able to solve numerical problems related to some		
	concepts in acid-base and nuclear chemistry.		
	4. Students will be able to analyse reactions and processes in field of		
	nuclear chemistry.		