Name of the Programme: M.Sc. Part-II (Inorganic Chemistry)

Course Code: CHI-600 **Title of the course:** Practical Course in Inorganic

Chemistry-III

Number of Credits: 4

Effective from AY: 2023-24

Prerequisit	Should have studied Inorganic chemistry practical course at M.Sc. Pa	rt-I.
es for the		
course:		
Course	1. To introduce practical knowledge in Inorganic Chemistry.	
Objective:	2. To learn techniques of crystallization and synthesis of coor	dination
	compounds.	
	3. To learn characterization of compounds using different instruments	
	4. To provide experience of synthesis and characterization of material	s.
	5. To introduce analysis of ores for metal content.	
Content	Minimum 23 experiments from the entire list shall be conducted	No of
		hours
	Unit – 1 Experiments in coordination chemistry: complex	
	synthesis, metal analysis (Any Five)	30
	a. Purification (distillation/recrystallisation) of ligands like acacH,	
	en, carboxylic acids etc.	
	b. Preparation of manganic tris(acetylacetonate) and estimation of	
	manganese.	
	c. Preparation of tris(thiourea)copper(I) sulfate and estimation of	
	copper.	
	d. Preparation of isomers; cis and trans-	
	dichloro(ethylenediamine)cobalt(III) chloride and estimation of	
	cobalt.	
	e. Preparation and resolution of tris(ethylenediamine)cobalt(III)	
	ion and estimation of cobalt.	
	f. Preparation of cis and trans-potassium	
	dioxalatodiaquochromate(III) and estimation of chromium.	
	g. Preparation of nitro and nitrito-pentaaminecobalt(III) chlorides	
	and estimation of cobalt.	
	h. Preparation cobalt(III) porphyrin complex and estimation of	
	cobalt.	
	i. IR spectral characterization of free ligands and coordinated	
	ligands.	
	NOTE: In complex synthesis, the student is expected to recrystallise	
	the product, record IR spectra and carry out metal analysis.	
	Spectral analysis can be carried over.	
	Unit –2 Experiments in Solid state chemistry (Any Eight)	<mark>36</mark>
	a. Preparation of spinel oxides by precursor method.	

b. Estimation of metals in precursors and oxides.	
c. Characterization of precursors by thermal analysis.	
d. Characterization of precursors and oxides by infrared analysis.	
e. X-ray diffraction studies of metal oxides.	
f. Direct current electrical resistivity of semiconductor (Ge/Si) by	7
Four Probe method.	
g. Curie temperature determination of dielectric material (PZT) by	7
measurement of dielectric constant v/s temperature.	
h. Measurement of saturation magnetization, Ms, Mr and Hc o	£
ferromagnetic materials.	
i. Determination of Curie temperature of magnetic oxides by A.C	
susceptibility studies.	
i. Preparation of CuO/SiO ₂ or NiO/SiO ₂ by wet impregnation	1
method.	
Unit – 3 Instrumental methods / spectral analysis / ion exchang	2 30
(Any Six)	
a. Determination of stability constant of Fe(III) – salicylic acid	1
compound (Job's Method).	
b. Determination of stability constant of Fe(III) – thiocyanat	2
compound.	
c. Determination of stability constant of Fe(II) – 1.10	-
phenanthroline compound.	
d. Determination of instability constant for the reaction between	1
Ag^+ and NH_3 .	
e. Determination of instability constant for the reaction between	1
Ag^+ and en.	
f. Determination of instability constant for the reaction between	1
Cu^{2+} and NH ₃ .	
g. Determination of instability constant for the reaction between	1
Cu^{2+} and en.	
h. Ion exchange chromatography:	
Separation of Mg^{2+} and Co^{2+} by anion exchange column.	
Separation of transition metal cations by anion exchange	2
column.	
Unit – 4 Ore / Alloy / commercial sample separation and	1 24
analysis using Titrimetry / Gravimetry / spectroscopy method	1
(Any Four)	
a. Analysis of Goan Iron ore: Hematite / magnetite	
b. Analysis of Devardas alloy	
c. Analysis of solder (Pb and Sn)	
d. Analysis of Pyrolusite	
e. Analysis of Nickel-Aluminium allov	
f. Analysis of Brass alloy	
g. Analysis of Bauxite	

	h. Analysis of Magnesite	
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical	
	aspects of laboratory experiments prior to the conduct of each experiment.	
References	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1	
/ Readings	& 2, 1963.	
	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,	
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall, 1974.	
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.	
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds,	
	Prentice-Hall, INC, 1970.	
	5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University	
	Press, 2008.	
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text	
	Book of Quantitative Chemical Analysis, 6 th Ed.; Pearson, 2002.	
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th	
	Ed.; Pearson, 2011.	
	8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad	
	Reinhold London, 1972.	
Course	1. Students will be in a position to purify ligands and will apply knowledge	
Outcome:	to synthesize coordination compounds.	
	2. Students will be able to study properties of coordination compounds using	
	different instruments.	
	3. Students will apply knowledge to synthesize solid state material and can	
	study their properties.	
	4. Students will be in position to separate metal ions by ion exchange	
	chromatography.	
	5. Students apply knowledge to separate and analyze metals present in ores	
	and alloys.	