Name of the Programme: M.Sc. Part-II (Inorganic Chemistry)

Course Code: CHI-621 Title of the course: Bioinorganic Chemistry

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students have studied chemistry/biochemistry courses at M.Sc. Part-I.	
for the course:		
Course	1. To understand the role of inorganic elements especially metal ions in biology.	
Objective:	2. To introduce metallobiolecules, metalloproteins & metalloenymes.	
J J	3. To understand the role of small molecule model compounds.	
	4. To introduce the concept of Biomimetic chemistry.	
Content	1. Essential elements in biology	No of
	Periodicity of elements, distribution of elements in biosphere, bio-	hours
	availability, bio-stability, building blocks of the biosphere; carbohydrates,	
	nucleic acids and proteins, biological importance of water, and brief	12
	review of the chemistry of biopolymers. Metallobiomolecules:	
	classification, metalloproteins (enzymes), metal activated proteins	
	(enzymes), metal functions in metalloproteins, Principles of coordination	
	chemistry related to bioinorganic research, physical methods in	
	bioinorganic chemistry.	
	2. Alkali and alkaline earth metals in biology	12
	Introduction, biological importance of the alkali and the alkaline earth	
	cations, Cation transport through membranes (ion pumps).	
	Photosynthesis, Hill reaction, Chlorin macrocycle and chlorophyll,	
	Absorption of light by chlorophyll, role of metals in photosynthesis, in	
	vitro photosynthesis.	
İ	3. Non-redox metalloenzymes	12
	Zinc metalloenzymes like carboxypeptidase, carbonic anhydrase and	
	alcohol dehydrogenase, Bio-functions of zinc enzymes, active site	
	structure and model complexes.	
	4. Biochemistry of a few transition metals	12
	Role of Fe, Mo, Cu and Ni. Oxygen carriers and oxygen transport	
	proteins, iron porphyrins (Haemoglobin and myoglobin). Haemocyanins	
	and Haemerythrins, Synthetic models for oxygen binding haemproteins.	
	Cytochrome C, catalase, peroxidase, and superoxide dismutase, blue	
	copper proteins, vitamin B_{12} coenzymes, nitrogen fixation and iron-sulfur	
	proteins, biological nitrogen fixation, nitrogenase and dinitrogen	
	complexes, iron-sulfur proteins, synthetic analogues for Fe-S proteins,	
	core extrusion reactions. Metal transport and storage: A brief review of	
	iron transport. transferrin, ferritin, hemosiderin, siderophores, iron	
	biomineralization	
	5. Biomimetic Inorganic Chemistry	12
	Fundamentals of biomimetic chemistry, metal – oxygen intermediates,	
	techniques used to probe the active sites of oxygen carriers, redox chemistry	

	of free molecular dioxygen, spectroscopy of Fe-O-Fe molety, geometry and
	electronic structure of coordinated dioxygen, other ligands for biological
	oxygen carriers, reactions of metal-oxygen compounds, oxygenases,
	Cytochrome P-450, synthetic procedures of simple ligands, isolation of S-
	containing amino acidor extraction of chlorophyll from green leaves,
	recrystallization of carboxylic acids. Non-Heme and heme ligands.
Pedagogy	Mainly lectures / tutorials / assignments /group discussion / self-study
	/presentations or a combination of some of these could also be used to some
	extent.
Reference /	1. S. J. Lippard & J. M. Berg, Principles of Bioinorganic chemistry, Panima
Readings	Publishing Corporation
iterating.	2. B. I. Britini, H. B. Gray, S. J. Lippard & J. S. Valentine, Bioiorganic
	chemistry, University Science books, Mill Valey, CA, 1994.
	3. D. E. Fenton, Biocoordination Chemistry, Oxford Chemistry Printers, 25
	Oxford University Press, 1995
	4. E. E. Conn, P.K. Stumpf, G. Bruening & R. H. Doi, Outlines of Bioinorganic Chemistry, 5 th Ed.; Wiley Eastern, 1983.
	5. F.A. Cotton, G. Wilkinson, P.L. Gaus, Basic Inorganic Chemistry, 3 rd Ed.
	(Chapter 31); WileyIndia, 2007.
	6. M. Weller, T. Overton, J. Rourke & F. Armstrong Inorganic Chemistry, Int.
	Ed. (Chapter 25); Oxford University Press, 2018.
	7. P Atkins, T Overton, J Rourke, M Weller & F Armstrong, Shriver & Atkins'
	Inorganic Chemistry, 5 th Ed. (Chapter 27); Oxford University Press, 2010.
	8. J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of
	Structure and Reactivity, 5 th Ed. (Chapter 19); Addison Wesley Publishing.
	9. R. W. Hay, Bioinorganic chemistry, Ellis Horwood Chichester, 1984.
	10. M.N. Hughes, The Inorganic Chemistry of Biological processes, 2 nd Ed.;
	Wiley (Interscience), 1984.
	11. R. R. Crichton, Biological Inorganic Chemistry, Elsevier, 2012.
	12. R. Breslow, Biomimetic Chemistry: Biology as an Inspiration, The Journal of
	Biological Chemistry, vol. 284, no. 3, pp. 1337–1342, 2009.
	13. C. Housecroft, A. G. Sharpe, Inorganic Chemistry, 4 th Ed; Pearson Publishing,
	2012.
Course	1. Students will be in a position to clarify the significance of essential elements in
Outcome:	biology.
	2. Students will be able to explain the role played by metal ions in vital processes
	like i) oxygen storage and transport and ii) electron transfer.
	3. Students will be able to explain basic concepts in Biomimetic chemistry.
	4. The students will be able use different techniques in Bioinorganic Chemistry.
	1. The statents will be able use afferent techniques in Diomorganic Chemistry.