Name of the Programme: M.Sc. Part-I (Chemistry)

Course Code: CHO-500 **Title of the course:** Fundamentals of Organic Chemistry

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry courses at graduate level	
for the	have cleared change of discipline entrance test conducted b	by Goa
course:	University.	
Course	1. To study the various concepts based on molecular orbital theory.	
Objective:	2. To understand the concepts of topicity, prostereoisomerism and	
	chemo-, regio- and stereoselectivity in organic reactions.	
	3. To understand the mechanistic aspects of various type of reactions	5 in
	organic synthesis.	
Content	1.Molecular orbitals and delocalized chemical bonding	No of
	a. Qualitative description of molecular orbitals of simple acyclic	hours
	and monocyclic systems, frontier molecular orbitals.	0.0
	b.Conjugation, cross conjugation, resonance, hyperconjugation	08
	and tautomerism (types and examples).	
	c. Aromaticity: Origin of Huckel's rule, examples of aromatic,	
	non-aromatic and antiaromatic compounds; concept of Mobius	
	aromaticity.	
		00
	2.Structure & Reactivity	08
	a. Acidity, basicity and pKa of organic compounds; Acid and	
	base strengths;	
	HSAB concept & Factors affecting it, effect of structure &	
	medium on acid and base strength.	
	b. Concept of superacids and superbases.	
	c. Electrophilicity&nucleophilicity, examples of ambident	
	nucleophiles & electrophiles. (Including revision of aromatic	
	electrophilic and nucleophilic substitution)	14
	3. Stereochemistry	14
	a. Brief revision of configurational nomenclature: R & S; D &	
	L; E & Z; cis & trans and <i>syn</i> & <i>anti</i> nomenclature. Chirality in molecules with two and more chiral centres.	
	b. Conformational analysis of open chain compounds (Butane, 2, 3-butane diol, 2,3-dibromobutane etc.). <i>Erythro</i> and	
	<i>threo</i> nomenclature.	
	c. Topicity and Prostereoisomerism: Topicity of ligands and	
	faces-homotopic, enantiotopic and Cram's rule /diastereotopic	
	ligands and faces.	
	d. Introduction to chemoselective, regioselective and	
	stereoselective reactions.	
	Suressereure reactions.	

 e. Stereochemistry of <i>cis</i>- and <i>trans</i>-decalins, conformation and reactivity of cyclohexane and substituted cyclohexanes, cyclohexene / cyclohexanone. conformational isomerism and analysis in acyclic and simple cyclic systems –substituted ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane and decalins, f. optical isomerism - optical activity - molecular dissymmetry and chirality - elements of symmetry. optical isomerism in biphenyls, allenes and spirans - optical isomerism of nitrogenous compounds racemisation and resolution. 	
4.Reaction Mechanism	08
 a. Brief revision of carbocations, carbanions, free radicals, carbenes, Arynes and nitrenes with reference to generation, structure, stability and reactivity; b. Types of mechanisms, types of reactions, thermodynamic and kinetic control. c. The Hammond postulate and principle of microscopic reversibility, d. Methods of determining reaction mechanisms like- i. Identification of products, ii. Determination of the presence of intermediates (isolation, detection, trappingandaddition of suspected intermediate, iii. Isotopic labelling, iv. Stereochemical evidence, v. Kinetic evidence and vi. Isotope effect (at least two reactions to exemplify each method be studied) 	08
 5.Aliphatic Nucleophilic substitution a. Brief revision of nucleophilic substitutions with respect to Mechanism, various factors affecting such reactions; b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General approach to various NGP processes; NGP by unshared/lone pair of electrons; NGP by π-electrons; NGP by aromatic rings (formation of phenonium ion intermediate); NGP by sigma bonds with special reference to bornyl and nor-bornyl system (formation of nonclassical carbocation) 	08
 6.Elimination reactions a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and Hofmann rule. b. Effects of changes in the substrate, base, leaving group and medium on i. Overall reactivity, ii. E1 vs. E2 vs. E1cB 	08

_	pyrolytic <i>syn</i> elimination (various examples involving cyclic and acyclic substrates to be studied).	
	7. Selective reagents for Organic transformation	06
	a. Oxidation of organic compounds, PCC, PDC and MnO_2 ,	
	ozonolysis, peracids.	
	b. Reduction of organic compounds: NaBH ₄ , LAH, DIBAL	
	reduction and reduction with borane and dialkylboranes.	
	Clemmensen reduction, Birch reduction and Wolff-Kishner	
	reduction	
Pedagogy	Mainly lectures and tutorials. Seminars	
	papers/assignments/presentations/ self-study or a combination of sor	
	these can also be used. ICT mode should be preferred. Sessions shou	ild be
	interactive in nature to enable peer group learning.	1 .
References /	1. W. Caruthers, I. Coldham, Modern Methods of Organic Synth	nesis,
Readings	Cambridge University Press, 4 th Ed., 2016.	Vork
	2. M. B. Smith, Organic Synthesis, McGraw–HILL, New International Edition, 1994.	IOIK,
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chem	istry
	Oxford University Press, 2 nd Ed., 2012.	iisu y,
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechan	isms
	San Diego, CA: Harcourt /Academic Press, San Diego, 2002.	,
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis - Concepts, Met	hods,
	Starting Materials, VCH Publishers Inc., New York, 1994.	-
	6. H. O. House, Modern Synthetic Reactions, W. A. Benja	amin,
	2 nd Ed.,1965	
	7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., Re	vised
	and Enlarged Edition, 1994.	
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Spr	inger
	India Private Limited, 5 th Ed, 2007.	~
	9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley and	Sons,
	Inc., 2005.	6
Course	1. Students will be in a position to evaluate the effect of delocalization	
utcomes:	electrons & presence or absence of aromaticity in organic compounds.	
	2. Students will be able to apply various concepts in stereochemistry to understand stereochemical outcome in a reaction.	,
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	4. Students will understand and apply various reagents for desired or	ganic
	transformations.	0