Name of the Programme: <u>M. Sc -I (Organic Chemistry)</u>

Course Code: CHO-501 **Title of the course:** Organic Spectroscopy

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites	Students should have studied Organic chemistry courses at M.Sc. Chen	nistry in
for the	semester I	
course:		
Course	1. To study various theoretical concepts related to organic spectr	oscopic
Objective:	techniques.	
	2. To understand the introductory aspects of commonly used 2D) NMR
	techniques.	
	3. To learn interpretational aspects of spectral data pertaining to UV, IR	R, PMR,
	CMR and MS.	
Content	1. UV-Visible Spectroscopy	No of
	a. Introduction. Electronic transition and energy levels, the	hours
	absorption laws.	
	b. Measurement of the spectrum, chromophores, Effect of solvent,	04
	Conjugation on UV-spectra.	
	c. Study of Tautomerism, Steric effect and geometrical isomerism in	
	UV spectra.	
	d. Woodward-Fieser rule for conjugated dienes and carbonyl	
	compounds.	
	2. Infrared Spectroscopy	08
	a. IR spectroscopy in structural elucidation of organic compounds	
	(various functional classes to be considered).	
	b. Methods in IR-Spectroscopy, effect of hydrogen bonding and	
	solvent effect on vibrational frequencies, overtones, combination and	
	Fermi resonance bands.	
	c. Factors influencing vibrational frequencies.	
	d. Characteristic frequencies of organic molecules.	
	e. Interpretation of spectra.	
	3. NMR Spectroscopy	14
	a. Principles of NMR.	
	b. Instrumentation.	
	c. Chemical shift- (revision of the basic concepts)	
	d. Interpretation of PMR spectra.	
	i.Coupling constants and AB, A ₂ B ₂ /A ₂ X ₂ , AMX and ABX spin	
	systems.	
	ii. Double resonance and decoupling	
	iii. Nuclear Overhauser Effect and its applications.	
	IV. NMR Shift reagents	
	v. Determination of Absolute and Relative configuration	
	4. ¹³ C –NMR spectroscopy	8

	a. Introduction to ¹³ C – NMR spectroscopy.	
	b. ¹³ C- chemical shifts effects (α -, β -, γ -, δ -substituent effects,	
	π -conjugation, heavy atom effect and ring size effects)	
	c. Proton coupled and proton decoupled 13Cspectra.	
	d. Off- resonance decoupling, APT & DEPT techniques.	
	5. ¹⁹ F- NMR and ³¹ P- NMR spectroscopy	6
	Principles and applications; heteronuclear coupling of carbon to ¹⁹ F	
	and ³¹ P.	
	6. Two-dimensional NMR spectroscopy	8
	Introduction to 2D NMR techniques and interpretation ofspectra of	
	simple organic compounds using following 2d-NMR	
	techniques-COSY, NOESY, HSQC, HMQC, HMBC, TOCSY and	
	INADEQUATE	
	7. Mass spectrometry	12
	a. Ionization Methods, Mass Analysis, Even and odd electron ions	
	and fragmentation modes.	
	b. Molecular Formulae Index (D.B.E), Molecular ion peak, base	
	peak, metastable ions, Nitrogen rule, effect of isotopes.	
	c.Prediction of molecular formulae based on relative abundance.	
	Rules for fragmentation, McLafferty rearrangement,	
	retro-Diels-Alder fragmentation, fragmentation associated with	
	functional groups; rearrangement and mass spectra of some chemical	
	classes.	
	Note: Problems involving combined use of different type of	
	spectra, in line with course objective/ Course outcomes are to be	
	emphasized.	
Pedagogy	Mainly lectures and tutorials. Semina	ars/term
	papers/assignments/presentations/self-study or a combination of some	of these
	can be used. ICT mode should be preferred. Sessions should be intera	ctive to
	enable peer group learning.	
References /	1. P.S. Kalsi, Spectroscopy of Organic compounds, New Age Intern	national
Readings	Pub. Ltd. & Wiley Eastern Ltd., 2 nd Ed., 1995.	
	2. R.M. Silverstein, F. X. Webster, D.Kiemle, D. Bryce, S.Saman	t, V. S.
	Nadkarni, Spectrometric Identification of Organic compounds, An	Indian
	Adaptation John Wiley & Sons Inc., 8 th Ed., 2022.	
	5. D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvyan, Introduc	ction to
	Spectroscopy, Brooks Cole, 5 th Ed., 2015.	· ·
	4. K.W. Silverstein, F. A. Webster, Spectrometric Identification of (Organic
	compounds, John Wiley & Sons Inc., /" Ed. (reprint), 2011.	· 11.
	5. V.IVI. Parikn, Absorption Spectroscopy of Organic Molecules, A	Addison
	wesley Longman Publishing Co., 19/4.	• ,
	o. D.f. williams & I. Fleming, Spectroscopic Methods in Organic Che	emistry,
1		
	Tata Mcgraw Hill Education, 6 th Ed., 2011.	

	 W. Kemp, NMR in Chemistry: A Multinuclear Introduction, Macmillan, 1986. J. R. Dyer, Applications of Absorption Spectroscopy of Organic compounds, Prentice Hall of India, 1987.
	10. L. D. Field, H. L. Li., A. M. Magill, Organic Structures from 2D NMR Spectra, Wiley, 2015.
Course	1. Students will be in a position to understand how spectral techniques can be
outcomes:	used in structure elucidation.
	2. Students will be able to deduce structures of simple to moderately complex
	molecules by combining the spectral data obtained using two or more spectral
	techniques.
	3. Students will be in a position to apply various concepts in organic
	spectroscopy (PMR, CMR, MS and 2D NMR) and analyse/ predict PMR,
	CMR, MS and 2D NMR spectral data based on given structures of simple
	molecules.
	4. Students will understand the fundamental difference between various
	spectroscopic techniques.