Name of the Programme: M. Sc -I (Organic Chemistry)

Course Code: CHO-502 **Title of the course:** Pericyclic and Organic Photochemical

Reactions

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied organic chemistry courses at M.Sc. Ch in semester I	emistry
Course Objective:	 To introduce various concepts in pericyclic chemistry based on mo orbital theory and apply for solving pericyclic reactions To introduce analysis of pericyclic reactions using theoretical conce To learn mechanistic aspects of pericyclic & photochemical reac organic synthesis. 	plecular epts. tions in
Content	1. Pericyclic Reactions	No of
	a. Theory of pericyclic reactions	hours
	i. Frontier Molecular Orbital (FMO) theory	2.4
	11. Transition state aromaticity (Mobius-Huckel theory) concept	34
	111. Orbital correlation diagram method.	
	using the above concepts	
	i Cycloaddition reactions	
	ii. Electrocyclic reactions	
	iii.Sigmatropic rearrangements under thermal and photochemical	
	conditions	
	(Note: Various important features to be discussed taking examples	
	important reactions of each type)	
	c. Some synthetically useful reactions (examples via theory of pericyclic reaction)	
	d Diels-Alder and retro Diels-Alder reaction. Regiochemistry	
	stereochemistry and intramolecular reactions.	
	e. 1, 3-dipolar additions	
	f. [3, 3]-Shifts; Claisen and Cope, aza-Cope-, oxy-Cope	
	rearrangements and fluxional molecules, variants of Claisen	
	Rearrangement such as Johnson-Claisen, Eschenmoser-Claisen,	
	Carroll- Claisen and Ireland-Claisen.	
	g. [2,3]-Sigmatropic rearrangements such as Sommelet-Hauser	
	rearrangement, Sufformulti ynde rearrangement, Melsennenner	
	h Ene reaction betero-ene retro-ene reactions	
	i. [1.5]-Thermal and [1.7]-photochemical signatropic hydrogen	
	shifts	
	2. Organic Photochemistry	26

	a. Interaction of electromagnetic radiation with matter, laws of
	photochemistry; fateof excited molecule; principles of energy
	transfer, types of photochemical reactions.
	Theoretical concepts in organic photochemistry w. r. t.
	cycloadditions. Electrocyclicreactions and sigmatropic reactions
	b. Photochemical reactions of alkenes, dienes, carbonyl compounds
	and arenes including the following- geometrical isomerisation:
	<i>Cis-trans</i> isomerization andphotostationary equilibrium:
	Paterno-Buchi reaction: Norrish Type cleavages: Di-pimethane
	rearrangement: hicycle rearrangement
	c. Photochemistry of aromatic compounds: valance isomerization:
	photostationary state of benzene and azabenzenes
	[4+4]-photodimerization of derivatives of naphthalenes
	cycloaddition reaction of benzene nanhthalene pyrrole and indoles
	with alkenes and alkynes
	d Reactions involving singlet and triplet oxygen. Photooxygenation
	reactions examples of [2+2] and [4+2]-cycloaddition reaction with
	isocyclic heterocyclic dienes and polynuclear aromatic compounds
	e Applications of Organic Photochemistry Photochemical
	Reactions as Key Steps in Natural Product Synthesis (any four
	examples): example of photopolymerization: photochemical
	functionalization at unactivated carbon. Barton reaction the
	hypohalite reaction and the Hofmann-Loffler-Freytag reaction
Pedagogy	Mainly lectures and tutorials Seminars / term papers /assignments /
- • • • • • • • • • • • • • • • • • • •	presentations / self-study or a combination of some of these can also be used
	ICT mode should be preferred. Sessions should be interactive in nature to
	enable peer group learning.
References /	1 N Turro V Ramamurthy JC Scaiano Modern Molecular
Readings	Photochemistry of Organic molecules University Science Books 2010
B-	2. B. Dinda, Essentials of Pericyclic and Photochemical Reactions, Springer,
	1 st Ed. 2017.
	3. S.Kumar, V. Kumar, S.P. Singh, Pericyclic Reactions: A Mechanistic and
	Problem-Solving Approach, Elsevier, 2016.
	4. R. E. Lehr., A. P. Marchand, Orbital Symmetry: A Problem Solving
	Approach, Academic Press, 1972.
	5. R. B. Woodward, R. Hoffmann, Conservation of Orbital Symmetry, Verlag
	chemie, Academic Press, NY, 1972.
	6. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley
	& Sons, 1 st Ed., 1991
	7. T. L. Gilchrist, R. C. Storr, Pericyclic Reactions, Cambridge Univ. Press,
	1972.
	8. F. A. Carrey, R. J. Sundberg, Advanced Organic Chemistry Part A and B.
	Pelnum Pub., 3rd Ed. 1990.
	9. T. Lowery, K. Richardson, Mechanisms and Theory in Organic Chemistry,
	Harper and Row Pub., NY, 3rd Ed., 1987.

	 C. H. DePay, Molecular Reactions and Photochemistry, Prentice Hall (I) Ltd, NewDelhi. J. Kopecky, Organic Photochemistry- A Visual Approach, VCH Pub., 1992.
Course outcomes:	 Students will be in a position to predict course of a given pericyclic reaction using the theoretical concepts. Students will be able to apply knowledge of stereochemical output in a reaction. Students will be able to understand and propose plausible mechanism of pericyclic/photochemical reactions. Students will understand applications of organic photochemistry.