Name of the Programme: M. Sc -I (Organic Chemistry)

Course Code: CHO-503 **Title of the course:** Synthetic Methodologies in Organic

Chemistry

Number of Credits: 04

Effective from AY: 2022-23

D	Chalante alternal de la construir alternistant accordent de	MC	
Prerequisites	Students should have studied organic chemistry courses at	M.Sc.	
for the	Chemistry in semester I		
course:			
	1. To study various concepts related to carbon-carbon bond formation.		
Course	2. To understand designing of organic synthesis to make molecules of		
Objective:	interest.		
3	3. To plan total synthesis based on protection-deprotection strateg	V.	
Content	1. Chemistry of enols and enolates	No of	
	a. Keto-enol tautomerism; Introduction, acidity, basicity	hours	
	concepts & pKa scale, neutral nitrogen and oxygen bases.	nouis	
		22	
	Formation of enols by proton transfer, mechanism of		
	enolization by acids & bases, types of enols & enolates,		
	kinetically & thermodynamically stable enols, consequences of		
	enolization, stable enolate equivalents, preparation and		
	reactions of enol ethers.		
	b. Formation of Enolates; Introduction, preparation &		
	properties, non-nucleophilic bases, E / Z geometry in enolate		
	formation, kinetic vs. thermodynamic control, other methods		
	for the generation of enolates, issue of enolate		
	ambidoselectivity.		
	c. Alkylation of enolates; diverse reactivity of carbonyl groups,		
	alkylation involving nitriles and nitroalkanes, choice of		
	electrophile for alkylation, lithium enolates of carbonyl		
	compounds and alkylation, specific enol equivalents to alkylate		
	aldehydes and ketones, alkylation of β -dicarbonyl compounds,		
	problem of regioselectivity during ketone alkylation and the		
	remedy provided by enones.		
	d. Reaction of enolates with aldehydes and ketones;		
	Introduction, aldol reaction including cross & intramolecular		
	version, enolisable substrates which are not electrophilic in		
	nature, controlling aldol reactions with specific enol		
	equivalents, specific enol equivalents for carboxylic acids,		
	aldehydes and ketones.		
	e. Acylation at carbon; Introduction, the Claisen ester		
	condensation (intramolecular and inter / crossed), acylation of		
	enolates by esters, preparation of keto-esters by the Claisen		
	reaction, directed C-acylation of enols and enolates & acylation		
	of enamines.		

f. Conjugate addition of enolates; Introduction control vs. conjugate addition, utility of varial kenes in conjugate addition, formation of si via conjugate addition and nitroalkanes as ver g. Examples pertaining to the applicati condensation reactions in organic synther reaction, Perkin reaction, Dieckmann conder addition, Robinson annulation, Sakurai react Reaction, Darzen, Stobbe, Benzoin, Pechman	ious electrophilic k-membered rings satile synthons. on of following esis; Mukaiyama ensation, Michael ion, Knoevenagel
 2. Synthetic utility of important namethodology a. Mannich Reaction, Nef Reaction, Mitsu Reaction, Baylis Hillman reaction, Mc. vicarious nucleophilic substitution, Steglich esterification. b. Ring closing and cross metathesis; generation, Grubbs-Hoveyda, Schrock catalys 	nobu and Appel Murry coupling, and Yamaguchi Grubb's various
 3. The Ylides in Organic Synthesis a. Phosphorus Ylides; Nomenclature and P olefination: mechanism, stereoselectivity, selective reactions, Wittig reagents derive carbonyl compounds. b. Modified Wittig, Horner – Wadswo Stille-Gennari modification with achiral and Peterson reaction, Julia Olefination. c. Sulfur Ylides; Sulfonium & sulfoxonium yl diphenylcyclopropyl sulfonium ylides & the carbonyl compounds / Michael acceptors 	cis- and trans ed from α-halo rth – Emmons, chiral substrates, ides in synthesis,
 4. Protecting Groups in Organic Synthesis a. Introduction and effective use of prumpolung of reactivity. b. Common protective groups namely acetal acetal/ketals, trialkylsilyl, TBDMS, THP, M& benzyl ether, methyl ether, benzyl amine, ethology to the synthesis using protection. S. multistep synthesis using protection-deprotection 	s & ketals, dithio DM, MEM, SEM Cbz, <i>t</i> -Boc, Fmoc, ome examples of
 5. Asymmetric Synthesis a. Chiral pool (chiron approach). b. Chiral auxiliary approach; Ox norephedrine-derived chiral auxiliary contribution and alkylation of chiral enolates and Alkylation using SAMP and RAMP. 	

	 c. Chiral Reagents - Use of (-)-sparteine. d. Asymmetric catalysis; CBS catalyst, Ruthenium catalyzed chiral reductions of ketones, Catalytic asymmetric hydrogenation of alkenes, Asymmetric epoxidation (Sharpless and Jacobson), Sharpless asymmetric dihydroxylation reaction, Organocatalyzed aldol reaction (Use of proline). 6. Halogenation and esterification reactions a. Formation of Carbon Halogen bonds; Substitution in saturated compounds, alcohols, carbonyl compounds, substitution at allylic and benzylic compounds, bromodecarboxylation (Hunsdiecker reaction), Finkelstein reaction, iodolactonisation. b. Acid and base catalyzed esterification and hydrolysis. 	4	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.		
References / Readings	 nature to enable peer group learning. W. Caruthers, I. Coldham, Modern Methods of Organic Synthesis, Cambridge University Press, 4th Ed, 2016. M. B. Smith, Organic Synthesis, McGraw–HILL, New York, International Edition, 1994. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2nd edition, 2012. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanisms, San Diego, CA: Harcourt /Academic Press, San Diego, 2002. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods, Starting Materials, VCH Publishers Inc., New York, 1994. H. O. House, Modern Synthetic Reactions, W. A. Benjamin, 1965, 2nd Ed. (revised with corrections). M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., Revised and Enlarged Edition, 1994. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springer India Private Limited, 5th Ed, 2007. T. Laue, A. Plagens, Named Organic Reactions, John Wiley and Sons, Inc., 2005. 		
Course outcomes:	 Students will be in a position to explain how a carbon-carbo can be constructed along with the selectivity in bond formations. Students will be able to apply knowledge of various react constructions of simple to complex organic molecules. Students will be in a position to design protecting group strate synthesis of organic molecules. Students will understand use of protecting groups in synthesis. 	ions in gies for	