Name of the Programme: M.Sc. Part-I (Chemistry)

Course Code: CHO-522 Title of the course: Practical Course in Organic Chemistry-II

Number of Credits: 02

Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry practical courses at graduate	
for the	or must have cleared change of discipline entrance test conducted	by Goa
course	University.	
Course	To translate certain theoretical concepts learnt earlier into experim	ental
Objective:	knowledge by providing hands on experience of basic laboratory	
<u> </u>	techniques required for organic syntheses.	
Content	Minimum 13 experiments from the list shall be conducted.	No of
	1. Introduction to laboratory equipments, apparatus and	hours
	safety	
	a. Common Hazards in Chemical Laboratory, Risk	04
	assessment	
	b. Accidents and Emergency procedures	
	2. Laboratory Techniques (Any Two)	08
	a. Simple distillation	
	i. Simple distillation of thionyl chloride under anhydrous	
	condition	
	ii. Simple distillation under Nitrogen atmosphere	
	b. Fractional distillation	
	i. Chloroform-dichloromethane mixture using water	
	condenser.	
	ii. Toluene and cyclohexane by fractionating column.	
	c. Vacuum distillation under inert atmosphere	
	Dry Distillation of DMF, <i>o</i> -dichlorobenzene, POCl ₃	
	d. Thin layer Chromatography	
	i. Purification and isolation of mixture of acids by using	
	Preparative TLC.	
	ii. Purification and isolation of mixture of phenols by using	
	Preparative TLC.	
	iii. Purification and isolation of pharmaceutical drugs using	
	Preparative TLC.	
	3. Organic Synthesis (Any Four)	16
	a. <i>p</i> -Iodonitrobenzene by Sandmeyer reaction	
	b. Pinacol- Pinacolone rearrangement	
	c. Hydrogenation of Maleic acid (Hydrogen balloon)	
	d. Preparation of nitrostyrene from aldehyde	
	e. Preparation of α , β -dibromocinnamic acid	
	f. Reduction of nitro compounds	
	g. Synthesis of Urea from ammonium cyanate	
	4. Solvent Free Organic synthesis (Any Two)	08
	a. Reduction using ball milling technique	

	b. Oxidation of 2° alcohol using KMnO ₄ /Alumina by		
	grinding technique.		
	c. Synthesis of (\pm) -Binol from β -naphthol		
	d. Hunsdiecker reaction of cinnamic acid derivatives		
	e. Beckmann rearrangement of oxime derivatives		
		16	
	5. Two-step Organic Synthesis (Any Two)	10	
	a. Benzamide-Benzoic acid-Ethyl Benzoate		
	b. Phthalic anhydride – Phthalimide – Anthranilic acid.		
	c. Methyl benzoate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid		
	d. Chlorobenzene – 2, 4 – dinitrochlorobenzene –		
	2,4-dinitrophenol		
	e. Acetanilide $-p$ -Bromo acetanilide $-p$ -Bromoaniline		
	<u>f. Acetophenone – Oxime – Acetanilide</u>	00	
	6. Separation, Isolation and Identification of Organic	08	
	compounds (Any One)		
	a. Separation, purification and identification of compounds of		
	binary mixture (Solid-Solid, Solid-liquid and Liquid-liquid)		
	using the TLC and column chromatography, chemical tests.		
Dedeess	IR spectra to be used for functional group identification.	1	
Pedagogy	Students should be given suitable pre- and post-lab assignments an		
	explanation revising the theoretical aspects of laboratory experime	nts prior	
Df	to the conduct of each experiment.	V 12	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's		
/ Readings	Textbook of Practical Organic Chemistry, 5 th Ed., Prentice Hall; 2011.		
	2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 nd Ed.		
	3. L. F. Fieser, K. L. Williamson "Organic Experiments" 7 th edit	101 D. C.	
	Heath, 1992.	Organia	
	4. K. L. Williamson, K. M. Masters, Macroscale and Microscale	Organic	
	Experiments, 6 th Edition, Cengage Learning, 2010		
	5. R. K. Bansal, Laboratory Manual in Organic Chemistry, I	New Age	
	International, 5 th Edition, 2016. 6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.		
	7. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry L	aboratory	
	Standard and Microscale Experiments, Saunders College Pr		
	3 rd edition, 2009.	uonsning,	
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing Ho	1164	
	2014.	use,	
Course	1. Students will be in a position to adopt Safe and good 1	aboratory	
outcomes	practices, handling laboratory glassware, equipment and chemical		
Sucomes	2. Students will be in a position to understand and calculate stoic	•	
	requirements during organic syntheses.		
	3. Students will be in a position to perform common laboratory tec	hniques	
	including reflux, distillation, vacuum distillation, aqueous extraction		
	layer chromatography (TLC).	,	
	4. Students will get hands-on experience on isolation of some impo	ortant	
	natural products.	51 1111	