Name of the Programme: M.Sc. Part-II (Organic Chemistry)

Course Code: CHO-602 **Title of the course:** Retrosynthesis and Heterocyclic

Chemistry

Number of Credits: 4

Effective from AY: 2023-24

Prerequisit	Students should have studied Organic Chemistry courses at M.Sc. Part-I level.		
es for the			
course			
Course Objective:	1.To apply the knowledge gained in organic synthesis for mak molecules.2.To understand various strategies involved in retrosynthesis of molecules	ing new `organic	
	3. To understand the concepts in heterocyclic chemistry and its applica	tions	
	4. To be able to propose routes for synthesis of heterocycles		
Content	1. Disconnection approach – Introduction, types of disconnection	No of	
	a. One-group disconnection	hours	
	b. Disconnection of simple alcohols and compounds derived		
	from alcohols, disconnections of simple olefins, simple/aryl	15	
	ketones and carboxylic acids		
	c. Two-group disconnection		
	d. Disconnection of 1,3-dioxygenated skeletons, β -hydroxy		
	carbonyl compounds, α , β -unsaturated carbonyl compounds,		
	1,5-dicarbonyl compounds, Mannich reaction		
	e. 'Illogical' Two-group disconnection		
	f. Disconnection of the 1,2-dioxygenated skeleton, α -hydroxy		
	carbonyl compounds, 1,2-diols, 'Illogical' electrophiles,		
	disconnection for the 1,4-dioxygenated pattern in 1,4-		
	dicarbonyl compounds, γ-hydroxy carbonyl compounds, Other 'Illogical' synthons, disconnection for the 1,6- dicarbonyl compounds, synthesis of lactones		
	 Observation strategies 	15	
	a Disconnection of heteroatom and heterocyclic compounds	15	
	such as ethers, amines, beterocycles, amino acids		
	b Disconnection strategies of few pericyclic reactions		
	c. Convergent and divergent synthesis		
	d. Strategic devices for carbon-heteroatom bonds, polycyclic		
	compounds: the common atom approach		
	e. Considering all possible disconnections		
	f. Alternative FGI's before disconnection- the cost of synthesis		
	g. Features which dominate strategy, functional group addition		
	and molecules with unrelated functional groups		

	3. Heterocyclic compounds	15	
	a. Introduction, classification and nomenclature of mono- and		
	bicyclic heteroaromatic molecules		
	b. Physical properties, dipole moment, acidity-basicity,		
	aromaticity, electron density distribution and reactivity of furan,		
	thiophene, pyrrole, indole, pyridine, pyridine-N-oxide,		
	quinoline, isoquinoline, diazines and triazines, 1,3- and 1,2-		
	azoles		
	4. Synthetic strategies for heterocycle synthesis	15	
	General methods of synthesis of the following: furan, thiophene,		
	pyrrole, indole, pyridine, quinoline, isoquinoline, chromones,		
	imidazoles, oxazoles, thiazoles		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assign	ments /	
	presentations / self-study or a combination of some of these can also	be used.	
	ICT mode should be preferred. Sessions should be interactive in	nature to	
	enable peer group learning.		
	1. S. Warren, Designing Organic Synthesis, John Wiley & Sons, 2009.		
References	2. G. S. Zweifel, M. H. Nantz, P. Somfai, Modern Organic Synthesis: An		
/ Readings	Introduction, 3 rd Ed. W. H. Freeman and Company, New York, 2022.		
	3. J. Clayden, N. Greeves & S. Warren, Organic Chemistry, Oxford, 20	16.	
	4. J. A. Joule, K. Mills & G. F. Smith, Heterocyclic Chemistry, 3 rd Ed.,	1995.	
	5. J. A. Joule & K. Mills, Heterocyclic Chemistry, Wiley-Blackwell	, 5 th Ed.,	
	2010.		
	6. T. L. Gilchrist, Heterocyclic Chemistry, Pitman Publishing, 2005.		
	7. R. M. Acheson, An Introduction to Chemistry of Heterocyclic Cor	npounds,	
	John Wiley and Sons, 3 rd Ed, 1977.		
	8. D. W. Young, Heterocyclic Chemistry, Longman Group Ltd., Londo	n, 1975.	
	9. R. O. C. Norman and J. M. Coxon. Principles of Organic Synthe	sis, CRC	
	Press, 3 rd Ed., 2009.		
	1.Students will be in a position to understand how a carbon-carbon	bond can	
	be constructed and/or cleaved		
	2. Students will be in a position to understand how retrosynthesis car	n be used	
	in finding out easily available chemical precursors for making	g organic	
Course	molecules		
Outcome:	3. Students will be in a position to apply retrosynthetic strategies and	l propose	
	routes for synthesis of organic molecules and heterocycles		
	4. Students will be able to understand and apply the concepts of the	reactivity	
	of heterocycles towards electrophilic, nucleophilic, reducing and	oxidizing	
	reagents.		