Name of the Programme: M.Sc. Part-II (Organic Chemistry)

Course Code: CHO-623 Title of the course: Concepts in Green Chemistry

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied M.Sc. Part-I Chemistry/Biochemistry.	
for the		
course:		
	1. To understand various concepts involved in Green synthesis	
Course	2. To understand green technologies used in chemistry	
Objective:	3. To learn application of green chemistry approaches to o	chemical
	industry	
Content	1. Principles and Concepts of Green Chemistry	No of
	a. Introduction, twelve green principles, sustainable	hours
	development and green chemistry.	
	b. Atom Economy: atom economic reactions- rearrangement	6
	and addition reactions.	
	c. Atom un-economic reactions- substitution, elimination and	
	Wittig reactions. Reducing toxicity.	
	2. Waste: Production, Problems and Prevention	6
	a. Introduction, Some problems caused by waste, sources of	
	waste from the chemical industry and the cost of waste.	
	b. Waste minimization techniques: the team approach and	
	process design for waste minimization, minimizing waste	
	from existing processes.	
	c. On-site waste treatment: Physical, chemical and	
	biotreatment.	
	d. Design for degradation: degradation and surfactants, DDT,	
	polymers and some rules for degradation.	
	e. Polymer recycling: separation and sorting, incineration,	
	mechanical recycling and chemical recycling to monomers.	
	3. Measuring and Controlling Environmental Performance	6
	a. The importance of measurement: Lactic acid production,	
	safer gasoline.	
	b. Introduction to life cycle assessment and green process	
	metrics.	
	c. Environmental management systems: ISO and European	
	Eco-Management and Audit Scheme, eco-labels, green	
	chemical supply, Strategies, Legislation and integrated	
	pollution prevention and control.	
	4. Catalytic processes and Green Chemistry	10
	a. Introduction to catalysis and comparison of catalyst types.	
	b. Heterogeneous catalysts: Basics of heterogeneous catalysis,	
	Zeolites and the bulk chemical industry, heterogeneous	

_		
	catalysis in the fine chemical and pharmaceutical industries.	
	Catalytic converters.	
	c. Homogeneous catalysis: Transition metal catalysts with	
	phosphine ligands, greener Lewis acids and asymmetric	
	catalysis.	
	d. Phase transfer catalysis: Hazard reduction, C - C bond	
	formation and oxidation using hydrogen peroxide.	
	e. Biocatalysis and photocatalysis.	
5.	Organic Solvents: Environmentally Benign Solutions	
	a. Organic solvents and volatile organic components, solvent	
	free systems.	
	b. Supercritical fluids: supercritical carbon dioxide and	
	supercritical water.	10
	c. Water as a reaction solvent and water-based coatings.	- 0
	d. Ionic liquids as catalysts and solvents.	
	e. Fluorous biphase solvents.	
	f. Deep eutectic solvents	
6	Renewable Resources	
0.	a. Biomass as a renewable resource. Energy: Fossil fuels,	
	biomass, solar power, fuel cells and other forms of	
	*	
	renewable energy.	6
	b. Chemicals and polymers from renewable feedstock.	
	c. Alternative economies: the syngas economy and the	
	biorefinery.	
7	Greener Technologies and Alternative Energy Sources	
/•		
	a. Design for energy efficiency	
	b. Photochemical reactions: advantages of and challenges	
	faced by photochemical processes, examples of	
	photochemical reactions.	10
	c. Chemistry using Microwaves: microwave heating and	10
	microwave-assisted reactions.	
	d. Sonochemistry and green chemistry examples.	
	e. Electrochemical synthesis and examples.	
	f. Flow chemistry	
8.	Industrial case studies	
	a. A brighter shade of green: synthesis of stilbene	
	intermediates for optical brightners.	
	b. Greening of acetic acid manufacture, EPDM rubbers and	6
	Vitamin C.	_
	c. Leather manufacture: tanning and fatliquoring.	
	d. Dyeing to be green: some manufacturing and products	
	improvement and dye application.	

	e. Polyethene: Radical process, Ziegler - Natta and			
	metallocene catalysis.			
	f. Eco-friendly pesticides.			
	1. Leo-menary pesticides.			
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /			
redagogy	presentations / self-study or a combination of some of these can also be used.			
	ICT mode should be preferred. Sessions should be interactive in nature to			
	enable peer group learning.			
References /	1. M. Lancaster, Green Chemistry, The Royal Society of Chemistry,			
Readings	Cambridge, UK, 2002.			
Readings	2. V. K. Ahluwalia, Green Chemistry: Environmentally Benign Reactions			
	Ane Books India, New Delhi, 2006.			
	3. A. S. Matlack, Introduction to Green Chemistry, Marcel Dekker, Inc.,			
	New York, 2001.			
	4. P. T. Anastas and T. C. Williamson, Green Chemistry: Frontiers in			
	benign chemical synthesis and processes, Oxford University Press,			
	Oxford, Ed. 1998.			
	5. R. Sanghi and M. M. Srivastava, Green Chemistry: Environment Friendly			
	Alternatives, Narosa Publishing House, Ed. New Delhi, 2007.			
	6. Samuel Delvin, Green Chemistry, IVY Publishing House, Delhi, 2006.			
	7. V. K. Ahluwalia and M. Kidwai, New Trends in Green Chemistry,			
	Anamaya Publishers, New Delhi, 2004.			
	8. P. G. Jessop and W. Leitner, Chemical Synthesis using Supercritical			
	fluids, Wiley – VCH, Verlag, Ed., Weinheim, 1999.			
	9. K. Tanaka, Solvent Free Organic Synthesis, Wiley – VCH GmbH and Co.			
	KgaA, Weinheim, 2003.			
	10. P. T. Anastas and J. C. Warner, Green Chemistry, Theory and Practice, Oxford University Press, N. York, 1998.			
	11. C - Jun Li and T – Hang Chan, Organic Reactions in Aqueous Media,			
	John Wiley and Sons INC., N. York, 2001.			
	12. F. Z. Dorwald, Organic Synthesis on Solid Phase, Wiley – VCH Verlag,			
	Weinheim, 2002.			
	13. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley – VCH			
	Verlag, Ed., Weinheim, 2003.			
	14. A. Loupy, Microwaves in Organic Synthesis, Wiley – VCH Verlag,			
	Weinheim, (Ed.), 2002.			
	15. R. V. Eldik and F. G. Klarner, High Pressure Chemistry, Wiley – VCH			
	Verlag, (Eds.), Weinheim, 2002.			
	16. F. Darvas, G. Dorman, V. Hessel, Flow Chemistry - Fundamentals:			
	Vol.1, De Gruyter, 1st Ed. 2014.			
Course	1. Students will be in a position to understand how chemistry can be			
Outcome:	done using greener alternatives			
	2. Students will be in a position to apply green technologies as a			
	sustainable solution for making molecules			
L				

3.	Students will be able to understand and apply the concepts of green
	chemistry to develop scalable processes in industry
4.	Students will understand various renewable resources