Name of the Programme: M.Sc. Part-II (Organic Chemistry)

Course Code: CHO-625 Title of the course: Organometallic Chemistry and

Rearrangement Reactions

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at M.Sc. Part-I level.	
for the		
course:		
course.	1. To understand concepts and various strategies involved in organ	ometallic
	chemistry.	ometanie
Course	2. To apply organometallic chemistry in the formation of carbo	n aarban
	carbon-hetero atom bonds.	II-carbon,
Objective:		aunthatia
		synthetic
	applications.	NL C
Content	1. Introduction to organometallic chemistry	No of
	a. Introduction to Organometallic Chemistry, Definitions,	hours
	Types of Metal-carbon bonds with main-group metals and	
	transition metals	08
	b. <i>Sigma</i> and <i>pi</i> bonds: linear pi system and cyclic pi system	
	c. Organic ligands, Nomenclature, heptacity, Electron counting	
	and 18-electron rule	
	d. Orbital interactions and bonding	
	e. Kinetic stability	
	2. Organometallic compounds of main group elements	12
	a. Preparation, properties and applications of Lithium	
	Magnesium, Cadmium, Zinc, Cerium, Mercury and	
	Chromium Compounds.	
	b. Heteroatom directed lithiation reactions	
	3. Role of transition metals in organic synthesis	20
	a. Preparation and properties of Copper, Palladium, Nickel,	
	Rhodium, Ruthenium and Gold reagents/complexes.	
	b. Mechanisms and applications of Mizoroki-Heck, Suzuki,	
	Stille, Hiyama, Negishi, Sonogashira, Wacker, Kumada,	
	Buchwald-Hartwig, carbonylation, homogenous	
	hydrogenation, carbonylation, allylic substitution)	
	4. Molecular rearrangements and their synthetic applications	20
	a. Unifying principles and mechanisms of rearrangements taking	
	place at an electron deficient and electron rich substrates.	
	b. Rearrangements taking place at carbon: Arndt-Eistert,	
	Wagner-Meerwein, benzil-benzilic acid, Pinacol-pinacolone,	
	semipinacol, Tiffeneau Demjanov, dienone-phenol, Wittig,	
	Favorskii, Stevens, Wolff, Baker-Venkatraman, Barton	

	decarboxylation, Pummerer rearrangement.
	c. Rearrangements at nitrogen: Hofmann, Curtius, Lossen,
	Schmidt, Beckmann, Neber, Stieglitz rearrangement.
	d. Rearrangements at oxygen: Payne (including aza- and thia-
	Payne) rearrangement, hydroperoxide rearrangement, Criegee
	rearrangement, Baeyer–Villiger oxidation
	e. Aromatic rearrangements: Benzidine, Fries, Von Richter,
	Sommelet-Hauser, Smile's, Jacobsen. Rearrangement on
	aniline derivatives- Bamberger rearrangement, Fischer-Hepp,
	Orton, Hofmann-Martius, Reilly-Hickinbottom,
	rearrangements of <i>N</i> -arylazoanilines, Phenylnitramines,
	Phenylsulfamines.
	f. Rearrangements involving fragmentations: Eschenmoser
	fragmentation.
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be used.
	ICT mode should be preferred. Sessions should be interactive in nature to
	enable peer group learning.
References /	1. A. Edward, Comprehensive Organometallic Chemistry, 2 nd Ed., 14 vols.
Readings	Pergman, 1995.
8	2. F. R. Hartley, Chemistry of Metal-Carbon Bond, 6 vols. Wiley, 1982-83.
	3. M. Schlosser, Organometallics in Synthesis - A Manual, John & Wiley,
	1994.
	4. R. H. CraJohn, The Organometallic Chemistry of the Transition Metals,
	Wiley, 1994.
	5. G. R. Stephenson, Transition Metal Organometallics for Organic Synthesis,
	Cambridge University Press, 1991.
	6. L. S. Liebeskind, Advances in Metal Organic Chemistry, Vols. 1 and 2
	(Ed.), JAI Press, 1989.
	7. J. P. Colliman, L. S. Hegedus, J. R. Norton & R. G. Finke, Principles and
	Applications of Organotransition Metal Chemistry, University Science
	Books, 1987.
	8. A. Yamamoto, Organotransition Metal Chemistry - Fundamental Concepts
	and Applications, Wiley, 1986.
	9. A. J. Pearson, Metallo-Organic Chemistry, John Wiley, 1985.
	10. W. Caruthers & I. Colddham, Modern Methods of Organic Synthesis, 4th
	Ed., Cambridge University Press, 2016.
	11. J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford, 2016.
	12. F. A. Carey & R. J. Sundberg, Advanced Organic Chemistry: Part A and B,
	5th Ed., Springer India Private Limited, 2007.
	13. R. O. C. Norman & J. M. Coxon, Principles of Organic Syntheses, 3 rd Ed.
	CRC Press Inc, 2009.
	14. M. B. Smith & Jerry March, Advanced Organic Chemistry- 50 Reaction,
	Mechanism and Structure, 6 th Ed., Wiley, 2006.

Course	1. Students will be in a position to understand how a carbon-carbon and carbon-	
Outcome:	hetero atom bonds can be constructed using organometallic chemistry.	
	2. Students will be able to understand and apply the concepts of organometallic	
	chemistry in syntheses of organic molecules.	
	3. Students will be in a position to write synthetic routes for organic molecules	
	using various molecular rearrangements.	

Г