Name of the Programme: M.Sc. Part-I (Chemistry)

Course Code: CHP-500 **Title of the course:** General Physical Chemistry

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry courses at graduate level	or must
for the	have cleared change of discipline entrance test conducted	oy Goa
course:	University.	5
Course Objective:	 Introduction of various concepts on thermodynamics. Introduction of electro chemistry and kinetics. Learning quantum chemistry. 	
Content	1. Mathematical Preparations	No of
	a. Introduction to various functions and function plotting	hours
	(exponential, logarithmic, trigonometric etc.), functions of	
	many variables. Complex numbers and complex functions.	12
	b. Linear equations, vectors, matrices and determinants.	
	c. Basic rules of differentiation and integration, Partial	
	differentiation, location and characterization of critical points	
	of a function, Regression methods, curve fitting.	
	d. Introduction to series, convergence and divergence, power	
	series, Fourier series	
	e. Probability (permutations and combinations).	
	2. Quantum Chemistry	20
	 a. Operators, Functions, Eigen value equations, Postulates. b. Schrodinger equation, application to simple system viz. free particle, particle in one dimensional, two dimensional and three-dimensional box (quantization, separation of variables, degenerate wave functions). c. Hydrogen like atoms, Schrodinger equation and its solutions, atomic orbital wave functions and interpretation. d. Hückel MO theory, Secular equations, Secular determinant, delocalization energy, charge density, π-bond order, free valence, applications to C₂H₄, C₃H₅ (radical), C₄H₆, C₄H₄, C₄H₄, C₄H₄, C₄H₄ 	
	3 . Thermodynamics	12
	a. Thermodynamic properties: Gas laws, Real gasses, Boyle temperature, Critical temperature, State and path properties. Intensive and extensive properties. Exact and inexact differentials. Internal energy, enthalpy, entropy, free energy and their relations and significances. Maxwell relations. Thermodynamic equations of state	
	b. Joule-Thomson effect. Joule-Thomson coefficient for van der Waals' gas. Joule-Thomson effect and production of low	

temperature, adiabatic demagnetization, Joule-Thompson	
coefficient, inversion temperature.	
c. The third law of thermodynamics. Need for the third law.	
Apparent exceptions to third law. Application of third law.	
Use of thermodynamic functions in predicting direction of	
chemical change. Entropy and third law of thermodynamics.	
d Phase equilibria: Phase rule Discussion of two component	
systems forming solid solutions with and without maximum or	
minimum in froozing point ourvo. Systems with partially	
minimum in neezing point curve. Systems with partially	
misciple solid phases.	
e. Three component systems: Graphical representation. Three	
component liquid systems with one pair of partially miscible	
liquids. Influence of temperature. Systems with two pairs and	
three pairs of partially miscible liquids. The role of added	
salts.	
4. Electrochemistry	8
a. EMF series, The cell potential: The Nernst equation, Cells at	
equilibrium. Determination of thermodynamic functions.	
b. Decomposition potential and overvoltage, electronegativity.	
basic principles completeness of deposition Separation with	
controlled potentials constant current electrolysis composition	
of electrolyte notential buffers physical characteristics of	
metal deposits	
a Electropleting and electrology plating electrosynthesis	
d. Concepts of acid base agreeus and non agreeus selvents	
d. Concepts of actu-base aqueous and non-aqueous solvents,	
nard and soft acto-base concept and applications.	0
5. Chemical Kinetics	8
a. General introduction to various types of order of reaction	
including fractional order, Molecularity of the reaction.	
b. Introduction to reversible and irreversible reactions and	
reactions leading to equilibrium. Van't Hoffs equation and	
analysis of Gibbs free energy of equilibrium reactions.	
c. Collision Theory and Maxwell Boltzmann distribution of	
energies of colliding molecules (derivation not required). The	
concept of collisional cross section and reactive cross section	
and its significance.	
d. Comparative study of transition state and collision state	
theory (derivation not required).	
e Reaction Mechanisms: elementary reactions Consecutive	
elementary reactions steady state approximation the rate	
determining sten and pre-equilibria	
f Free radical reactions Complex reactions such as	
acataldahuda daaamnasitian and reaction hatwaan U and Dr	
accurately de decomposition and reaction between Π_2 and BI_2 ,	
Flowenters reactions and acid-base catalysis.	
g. Elementary enzyme reactions. Lineweaver-Burk plot and its	
analysis	

Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
References /	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8th Ed., Oxford
Readings	University Press, New Delhi. 2007
C	2. G. M. Barrow, Physical Chemistry, 5 th Ed., Tata McGraw Hill, New
	Delhi. 2016
	3. J. E. House, Principles of Chemical Kinetics, 2 nd Ed., Academic Press,
	Elsevier Burlington, USA, 2007
	4. I. N. Levine, Quantum Chemistry, 7th Ed., Prentice-Hall, New Delhi.
	1999
Course	1. Students should be in a position to understand and explain various
outcomes:	concepts in physical chemistry.
	2. Students should be in a position to apply these concepts during the lab
	course in physical chemistry.
	3. Students will understand concepts of electrochemistry.
	4. Students will be able to apply fundamentals of chemical kinetics for
	understanding reaction mechanisms.