Name of the Programme: M. Sc -I (Physical Chemistry)

Course Code: CHP-501 **Title of the course:** Quantum Chemistry and Statistical

Thermodynamics

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites	Students should have studied physical chemistry courses at	M.Sc.
for the	Chemistry in semester I	
course:		
Course	1. Introduction of various concepts of quantum chemistry.	
Objective:	2. To introduce various concepts of statistical thermodynamics	
Content	1. Quantum Chemistry	No of
	a. The origin of quantum mechanics: Planck's quantum theory,	hours
	wave particle duality, uncertainty principle concept of wave	
	function, the Born interpretation of wave function.	34
	Normalization and orthogonalizations, quantization, Eigen	
	values and Eigen functions.	
	b. Postulates of quantum mechanics; Schrödinger equation for	
	free particle, particle in a box, degeneracy. Quantum	
	mechanical operators and their properties, commutation	
	relations, Hamiltonian and Laplacian operators, Harmonic	
	oscillators, Angular momentum, Ladder Operators.	
	c. Approximate methods, Schrödinger equation, its	
	importance and limitations, Born-Oppenheimer approximation,	
	Anti-symmetric wave functions and Slater determinants (many	
	electron system e.g. He atom), Exclusion and Aufbau	
	principle, Variation method, Linear Variation Principle,	
	Perturbation theory (first order non-degenerate) and their	
	applications to simple systems.	
	a. MO theory, Huckel MO theory, Bond-order, Charge density	
	matrix, Unification of HMO and VB theory, their applications	
	in spectroscopy and chemical reactivity, electron density forces	
	and then fole in chemical bolding. Hybridization and valence MO_{α} of HO_{α} NH and CH_{α} Application of Hückel Theory to	
	athylene, but a diane and benzene molecules	
	2 Statistical Thormodynamics	26
	2. Statistical flict modynamics a. The language of statistical thermodynamics: Probability	20
	ensemble microstate degeneracy permutations and	
	combinations Configuration and weights the dominant	
	configuration The Boltzmann distribution The molecular	
	partition function: its interpretation and its relation to uniform	
	energy levels.	
	b. Translational, Rotational, Vibrational and Electronic	
	Partition functions for diatomic molecules. Relation between	

	 thermodynamic functions and partition functions and their statistical interpretations. Equilibrium constants from partition function. c. Law of Equipartition energy. Theories of specific heat of solids. Comparison between Einstein and Debye theories. d. Concept of symmetric and antisymmetric wave functions. Ortho and para hydrogens. Quantum Statistics: Fermi-Dirac (FD)and Bose-Einstein (BE) statistics. Comparison between
	MB, FD and BE Statistics.
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	nature to enable peer group learning
References /	1 P W Atkins and L D Paula Physical Chemistry 8 th Ed Oxford
Readings	University Press New Delhi 2007
1100001155	2. G. M. Barrow, Physical Chemistry, 5 th Ed., Tata McGraw Hill, New
	Delhi. 2016.
	3. M.C. Gupta, Statistical Thermodynamics, Wiley Eastern, New Delhi.
	4. I. N. Levine, Quantum Chemistry, 7 th Ed., Prentice-Hall, New Delhi.
	1999
	5. H. Metiu, Physical Chemistry, Statistical Mechanics, Taylor & Francis, New York, 2006
Course	1. Students should be in a position to understand and explain various
outcomes:	concepts of quantum chemistry viz. the wave function and applications.
	2. Students should be able to explain various concepts in statistical
	thermodynamics viz. the partition function and applications.
	3. Students will be able to explain postulates of quantum mechanics.
	4. Students will be able to explain law of equipartition energy.