Name of the Programme: M. Sc -I (Physical Chemistry)

Course Code: CHP-502 Title of the course: Group Theory and Molecular Spectroscopy

Number of Credits: 04 Effective from AY: 2022-23

Prerequisites	Students should have studied physical chemistry courses	at M.Sc.
for the	Chemistry in semester I	
course:		
Course	1. To introduce concepts in Group Theory and it applications to c	chemistry.
Objective:	2. To introduce some advance topics in spectroscopy.	
Content	1. Group Theory for Chemistry	No of
	a. Symmetry elements and symmetry operations, Concept of	hours
	group and group multiplication tables, order of the group,	
	classes and subgroups in a group, Different types of groups	30
	(cyclic, abelian and non-abelian groups).	
	b. Point groups, Matrix representations of a group, Reducible	
	and Irreducible representations groups, Great Orthogonality	
	Theorem, Properties of Irreducible representations, Mulliken	
	symbols for Irreducible representations, Character tables.	
	c. Standard reduction formula, Direct products of	
	representations and it applications Quantum Chemistry and	
	spectroscopy: Vanishing of integrals, Selection rules.	
	Applications of group theory for hybridization of atomic	
	orbitals. Projection operator and Symmetry adapted linear	
	combinations (SALCs), MO treatment (within Huckel	
	Molecular Orbital Theory) of large molecules with symmetry.	
	Applications of group theory to Infra-red and Raman	
	spectroscopy.	
	d. Space Groups: Symmetry elements, Schoenflies, and	
	Hermann Mauguin notation, Representation of point groups	
	and space groups, point symmetry, space symmetry, glide	
	plane, helical screw axis	
	2. Microwave, IR and Raman Spectroscopy	12
	a. Theoretical treatment of Rotational and Vibrational	
	spectroscopy.	
	b. Principle of Fourier Transform (FT) spectroscopy, FTIR	
	spectroscopy: Theory, instrumentation and applications.	
	c. Quantum theory of Raman effect, Raman shift,	
	Instrumentation, Resonance Raman spectroscopy,	
	Complimentary nature of IR and Raman spectroscopy in	
	structure determination, Applications.	
	3. NMR Spectroscopy	10
	a. Basic principles of NMR	
	b. Theory of pulse NMR and Fourier analysis, FT-NMR.	

	 c. Solid state NMR, magic angle spinning (MAS), dipolar decoupling and cross polarization, applications of solid-state NMR. d. Double resonance, NOE, Spin tickling, Solvent and shift reagents, Structure determination by NMR. 4. ESR Spectroscopy a. Theory and experimental techniques, Identification of odd-electron species (methyl and ethyl free radicals) and 	8
	radicals containing hetero atoms. b. Spin trapping and isotopic substitution, Spin densities and	
	McConell relationship, Double resonance techniques.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assig presentations / self-study or a combination of some of these caused. ICT mode should be preferred. Sessions should be internature to enable peer group learning.	n also be
References /	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8th Ed.	, Oxford
Readings	 University Press, New Delhi, 2007. F.A. Cotton, Chemical Applications of Group Theory, 3rd F Wiley & Sons-Asia, New Delhi, 1999 K. V. Raman, Group Theory and its applications to chemis McGraw-Hill, New Delhi, 1999 C. N. Banwell and E.M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-Hill, New Delhi, 1994 W. Kemp, NMR in Chemistry a multinuclear introduction, Ma 1986. R.S. Drago, Physical Methods in Chemistry, W.B. Saunders C 1977. 	Ed., John stry, Tata Molecular acmillan, Company,
Course outcomes:	 Students should be in a position to explain various concepts in Theory. Should be able to apply character table to solve various proble Students should be in a position to apply the knowledge of spe for their dissertation and research work. Students will understand the fundamental difference between spectroscopic techniques. 	ms. ectroscopy