Name of the Programme: M. Sc -I (Physical Chemistry)

Course Code: CHP-504 **Title of the course:** Electrochemistry and Surface Studies

Number of Credits: 04

Effective from AY: 2022-23

Prerequisites	Students should have studied physical chemistry courses at M.Sc. Ch	emistry in
for the	semester I	
course:		<u>.</u>
Course Objective:	 To introduce some core concepts of electrochemical processes incluinteraction theories, electrified interfaces, electrochemical kind thermodynamics To develop problem solving skills in electrochemistry To introduce fundamental concepts and applications of electroch day-today life eg. batteries, solar cells, capacitors 	etics and emistry in
Content	1. Ionic Interactions and Conductance in Electrolytes	No of
	a. Ion-solvent interactions. Born Theory, validity and limitations.	hours
	b. Solvation number and coordination number.	
	c. Ion-ion interactions and Debye-Huckel theory of ion cloud.	10
	d. Applications of Debye- Huckel equation. Concept of ionic	
	strength and activity coefficient.	
	e. Debye-Huckel limiting law and its modifications.	
	f. Debye-Huckel-Onsager equation, validity and limitations.	
	g. Einstein-Smoluchowski equation.	
	h. Influence of ionic atmospheres on ionic migration: Relaxation and	
	Electrophoretic effects.	
	i. Conductance in strong and weak electrolytes.	
	2. Electrified Interfaces	10
	a. Formation of an electrode/electrolyte interface and its structure.	
	b. Polarizable and non-polarizable interfaces.	
	c. Potential difference across electrical double layer: outer potential, surface potential, inner potential and relationship between them, chemical and electrochemical potentials.	
	d. Thermodynamics of electrified interface: Surface tension, surface excess, Electro-capillary curves. Determination of surface excess. Condition for thermodynamic equilibrium at electrified interface.	
	e. Generalized Gibbs equation, Lippmann equation and electrical capacitance at the double layer.	
	f. Models of the electrified interface.	
	g. Ion adsorption at the electrode: hydrated electrodes, contact adsorption,	
	Globs adsorption equation.	0
	5. Fure Liquid Electrolytes: Ionic Liquids	ð
	a. I nermal loosening of lonic lattice.	

b. Ionic liquids in surface electrochemistry: Electrode/electrolyte interfacial	
processes in ionic liquids.	
c. Electrochemistry of Ti (IV) in Ionic liquids.	
A Flactroda Kinatics and Corrosion	
a. Disturbance of electrode equilibrium cause of electron transfer fact and	
a. Disturbance of electrode equinoritatin, cause of electron transfer, fast and slow systems and their current-notential relationship	
h Butler-Volmer equation and its low and	
high field approximations.	
c. Nernst equation as a special case of B-V equation.	12
d. Tafel plots for anodic and cathodic processes.	
e. Fundamentals of Impedance spectroscopy; determining exchange current densities and rate constants from impedance plots.	
f. Principles of corrosion, electrochemical methods of avoiding corrosion.	
g. pH-potential diagrams: Pourbaix diagram for corrosion of iron and	
stability of water.	
5. Colloidal Chemistry	
a. Interaction of double layers and stability of Sols. DLVO theory.	
b. Colloidal electrolytes, critical micelle concentration, Kraft temperature.	
c. Electrokinetic phenomena: Electroosmosis, streaming potential and	8
current, electrophoresis. Zeta potential.	
d. Donnan membrane equilibria.	
e. Micellesandreversemicelles, Emulsions and Microemulsions.	
6. Electrochemical Energies: Conversion and Storage	
a. Thermodynamics of electrochemical energy conversion.	
b. Batteries: Basic principles; rating and shelf life. Zinc-Manganese	
dioxide: Lectanche and alkaline datteries. Lithium ion datteries and recharge ability	
c Fuel cells: Principle of a hydrogen-oxygen fuel cell Classification of	_
fuel cell systems based on types of electrolytes/temperature. Efficiency	
w.r.t. thermodynamic efficiency, reliability and economic benefits. Direct	
methanol-polymer electrolyte fuel cell and electro-catalysts - a case study.	
Reactions occurring in various fuel cells and calculation of their electrode	
and cell potentials.	
d. Super-capacitors: Introduction: Origin of Supercapacitance.	
7. Photoelectrochemistry	
a. Semiconductor/Electrolyte Interface: Band edge and Band bending.	
b. Light absorption and carrier generation at the electrode: photoinduced	
charge transfer, hot carriers.	_
c. Photoelectrodes: p-type photocathode, n-type photoanode.	5
d. Determination of surface states.	
e. Photoelectrocatalysis: photoelectrochemical water splitting and CO_2	
reduction.	
f. Types of photoelectrochemical devices.	

Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations /	
	self-study or a combination of some of these can also be used. ICT mode should be	
	preferred. Sessions should be interactive in nature to enable peer group learning.	
References /	1. J. O. M. Bockris & A. K. N. Reddy, Modern Electrochemistry, Springer India, Pvt.Ltd,	
Readings	2000, Vol.1,2and3.	
	2. D. Crow, Principles and Applications of Electrochemistry, Blackie Academy and	
	Professional, 1994.	
	3. C. M. A. Brett & A. M. O. Brett, Electrochemistry: Principles, methods and	
	applications, Oxford, NewYork Oxford University Press, 1993.	
	4. R. D. Vold & M. J. Vold, Colloid and Interface Chemistry, Addison-Wesley, 1983.	
	5. A. Vincent & B. Sacrosati, Modern Batteries, John Wiley, NewYork, 1997.	
	6. J. O. M. Bockris & S. Srinivasan, Fuelcells: Their Electrochemistry,	
	McGraw-HillBook Co., 1969.	
	7. A. A. J. Torriero, Electrochemistry in Ionic Liquids, Vol. 1: Fundamentals, Springer	
	International Publishing, 2015	
	8. B. A.J., Stratmann M., Licht D, Encyclopedia of Electrochemistry, Semiconductor	
	Electrodes and Photoelectrochemistry, Wiley-VCH, 2002.	
Course	1. Students will be in a position to explain various fundamental and core concepts	
outcomes:	of electrochemistry.	
	2. Students should be in a position to apply the knowledge of electrochemistry for	
	their dissertation and research work	
	3. Students should be in a position to apply these concepts during the lab course in	
	physical chemistry	
	4. Students will be able to explain the concepts of Photoelectrochemistry.	