Name of the Programme: M.Sc. Part-II (Physical Chemistry)

Course Code: CHP-600 Title of the course: Practical Course in Physical Chemistry -

III

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Should have studied Physical chemistry practical course at M.Sc. Part-I.	
for the		
course:		
Course	1. To introduce concepts of Kinetics and Thermodynamics	
Objectives:	2. To introduce concepts of Surface science and Catalysis	
	3. To introduce various concepts of Electrochemistry	
	4. Introduction to the use of computers and computational tools in chemi	stry
Contents	Note: A minimum of 7 experiments from each Unit I-III are to be	No of
	completed.	hours
	Unit - I. Instrumental	
	a. To determine the redox potential of Fe^{2+}/Fe^{3+} system using rotating	40
	disk voltammetry method.	
	b. To determine the instability constant of the reaction	
	$[Ag(NH_3)_2]$ > $Ag + 2NH_3$ potentiometrically.	
	c. To determine the transport number of ions using moving boundary	
	method.	
	d. To verify Nernst equation and determine the standard oxidation	
	potential of copper and zinc electrodes.	
	e. To study effect of ionic strength on activity coefficient of Ag^+ ions.	
	f. To investigate the reaction kinetics between Potassium Persulphate	
	and Potassium Iodide colorimetrically.	
	g. To determine the equivalent conductance of a strong electrolyte	
	(KCl) at several concentrations and verify Onsager's equation.	
	h. To estimate the concentration of Sulphuric acid, Acetic acid and	
	Copper sulphate in a given solution conductometrically.	
	i. To determine the concentration of $Fe^{4\tau}$ ions by titrating with	
	potassium dichromate conductometrically.	
	J. To study the kinetics of hydrolysis of tertiary butyl chloride by	
	conductometry.	
	k. To determine the half wave potential of Cu ² /Cd ² /Zn ² by using	
	polarography.	
	I. To study the effect of sol-gel and hydrothermal method of synthesis	
	on crystallite size and surface area of a semiconductor catalyst.	
	m. To investigate the effect of catalyst loading on photocatalytic	
	To study, the strong strong rear and a lumeric method.	
	n. To study the stress-strain response of polymeric materials and	
	compare their strength.	

o. To determine the degradation rate of the polymers using	
thermogravimetric methods.	
p. To determine the curie temperature of conducting polymer samples.	
q. To determine the resistivity of polymeric material using four probe	
method.	
	10
Unit - II. Non-Instrumental	40
a. To determine the critical micelle concentration of three types of	
surfactants using stalagmometer.	
b. To determine the partial molal volume of sodium chloride-water,	
ethanol-water and methanol-water system by apparent molal	
volume method.	
c. To study the effect of surfactants on surface tension of water using	
stalagmometer.	
d. To study the variation of viscosity with composition of mixtures	
and to verify the formation of compounds by Oswald's	
viscometer.	
e. To study the effect of pH on the kinetics of iodination of Aniline.	
f. To study the kinetics of reaction between H_2O_2 and KI (clock	
reaction).	
g. To study the kinetics of rapid reaction between Bromine and Iodine	
in aqueous media.	
h. To investigate the autocatalytic reaction between Potassium	
Permanganate and Oxalic acid.	
i. To study the electroless deposition of Ni on non-conductor substrate	
and to determine the rate of deposition.	
j. To study the variation in catalytic activity of three different metal	
oxides for H_2O_2 decomposition reaction.	
k. To investigate the effect of pH on adsorptive separation of azodye	
from water using MCM-41.	
Unit - 3. Computational Chemistry	40
a. To generate a mark sheet and understand various features of	
spreadsheets.	
b. To generate a plot for a given function such as solutions of 1D box.	
harmonic oscillator, H-like atom wave functions, Gaussians	
distributions etc.	
c. To write a computer program to obtain equivalence point in pH	
metry and potentiometric experiments (derivative method)	
d To write a computer program to find percent composition for	
various atoms of a given molecular formula	
• To write a computer program to obtain clone and intercent for linear	
data using least square fit mathed	
f. To write a computer program to obtain contar of mass of a single	
melocyle and moment of inertic house obtain closeffortion of the	
molecule and moment of mertia, hence obtain classification of the	

	given molecule.
	g. To write a computer program to find out various parameters for data
	analysis viz. minimum, maximum, average, standard deviation,
	variance, covariance, correlation coefficient, frequency
	distribution etc.
	h. To write a computer program to obtain thermodynamic probability.
	1. To write a computer program to obtain degeneracy of a given energy
	level for a particle in a cube.
	J. Calculate the ground state energy of hydrogen atom using various
	k Calculate and interpret the IP PAMAN and NMP spectre of simple
	organic molecules using <i>ab-initio</i> program
	organie notecules using uo-muo program.
Pedagogy:	Mainly pre-labs / practicals or a combination of some of these could also be used
	to some extent.
References /	1. A. Finlay and J.A. Kitchener, Practical Physical Chemistry, Longman
Readings:	Publisher, 1963.
g.,	2. A. M. James, Practical Physical Chemistry, Longman Publisher, 1974.
	3. D.P. Shoemaker and C.W. Garland, Experimental Physical Chemistry,
	McGraw-Hil, 1981.
	4. J. B. Yadav, Advance Practical Physical Chemistry, Krishna Educational
	Publishers, 2014.
	5. S.Attila, and N. S. Ostlund. Modern quantum chemistry: introduction to
	advanced electronic structure theory. Courier Corporation, 2012.
	6. P.P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik, CH-20: Photocatalytic
	and microbial degradation of Amaranth dye, Advances in Biological Science
	Research-A Practical Approach 2019, 327-345, Academic Press.
	7. J.B. Foresman, E. Frisch, Exploring Chemistry with Electronic Structure
	Methods: A Guide to Using Gaussian, 2nd Ed. Gaussian, 1996
Course	1. Student should be able to apply the concents of physical chemisters in M.S.
Outcomes	Dissertations
Succomes.	2. Students shall be equipped with practical skills needed for research and
	development.
	3. Students will understand the instrumental and non-instrumental methods of
	analysis.
	4. Students will understand use of computers and computational tools in
	chemistry.