Name of the Programme: M.Sc. Part-II (Physical Chemistry)

Course Code: CHP-602 **Title of the course:** Heterogeneous Catalysis: Fundamentals

and Applications

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied Chemistry courses at MSc Part-I.	
for the		
course:		
Course	1. To introduce concepts of surface science and catalysis.	
Objectives:	2. To provide fundamental knowledge of theories that govern heter	ogeneous
	catalytic reactions.	C
	3. To introduce newer methods of synthesizing nanocatalysts	and its
	characterization.	
	4. To introduce latest developments about application of ca	talyst in
	environment and energy sector.	•
Concepts	1. Basic Concepts	No of
-	a. General Introduction: Catalysis and activation energy.	hours
	Heterogeneous reactions with suitable illustrations. Catalytic	
	activity, selectivity and stability. Steps in a heterogeneous	20
	catalytic reaction. Factors affecting rate of reaction such as	
	temperature, flow rates, molar composition etc.	
	b. Adsorption and Surface Area: Cause of adsorption. No of	
	molecules striking the surface and sticking probability. Types of	
	adsorption and potential energy profiles for adsorption of H ₂ .	
	Adsorption isotherms for gases and solutes. Basic types of BET	
	isotherms. Gibbs adsorption equation and changes in surface	
	tension. Free energy, enthalpy and entropy of adsorption.	
	Chemisorption of H ₂ , O ₂ and CO. Surface area and Porosity:	
	Determination of surface area. Porosity and pore size	
	distribution.	
	c. Classification of catalysts based on electrical conduction.	
	Adsorption on specific crystal planes; geometric factor in	
	catalysis: Balandin's multiplet theory and Valence angle	
	conservation. Cumulative & depletive adsorption, Electronic	
	effect in catalysis by metals. Role of diffusion in catalysis.	
	2. Kinetics and mechanisms of catalyzed reactions	5
	Kinetics of catalyzed reactions and rate expressions.	
	Mechanism of catalyzed reactions obeying Langmuir-	
	Hinshelwood, Eley- Rideal and Mars van Krevelen models	
	with suitable examples.	

	3. Preparation of Catalysts	
	Various methods for preparation of bulk catalysts: Precipitation	
	method, Impregnation method catalyst impregnation with or	5
	without interaction between support and catalyst. Synthesis of	
	microporous solids. Synthesis of mesoporous solids.	
	4. Thermal and Spectroscopic Methods in Heterogeneous	
	Catalysis Characterization of the catalysts by temperature	
	programmed desorption using probes such as ammonia and	10
	pyridine molecules. Characterization of surface area using	
	BET method. Characterization of adsorbed	
	molecules/intermediates by IR spectroscopy and XPS.	
	Introduction to EXAFS and Mössbauer spectroscopy in	
	characterizing catalysts.	
	5. Zeolite based Catalysis and industrial applications	
	Structure building in zeolites such ZSM-5. Nature of active	5
	sites and their characterization. Role of Zeolite acidity and	J
	Shape Selectivity in catalytic reactions. Zeolite based catalysis	
	in MTG process.	
	6. Semiconductor catalysis and its application in energy and	
	environmental sector	10
	Introduction to semi-conductor surface and catalysis with	
	application in photocatalytic water splitting and CO ₂ reduction	
	to value added chemicals. Case studies on photocatalytic	
	degradation of dyes. Practical demonstration of photocatalytic	
	treatment of laboratory waste water contaminated with dyes,	
	adsorptive separation and kinetic analysis.	
	7. Electrocatalysis and applications	5
	Basic electro-catalytic concepts, comparison of electro-	
	catalysts. Electrocatalytic water splitting reaction. Role of	
	catalytic materials in energy storage applications.	
Pedagogy:	Mainly lectures, tutorials, assignments, demonstration, self-stud	dy or a
	combination of some of these could also be used to some extent.	
Reference /	1. D. K. Chakrabarty and B. Viswanathan, Heterogeneous Cataly	sis, New
Readings:	Age International Publishers, 2008.	
	2. G. A. Somorjai, Introduction to Surface Chemistry and Cataly	sis, John
	Wiley, 2002.	
	3. M. Thomas and W. J. Thomas, Principles and Practice of Heter	ogeneous
	Catalysis, VCH Publishers, 1996.	
	4. P.P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik,	CH-20:

	Distantiation of minutation of American the Advances in
	Photocatalytic and microbial degradation of Amarantin dye, Advances in
	Biological Science Research-A Practical Approach 2019, 327-345,
	Academic Press
	Academic 11055.
	5. B.H.R. Suryanto, Y. Wang, R. K. Hocking, Overall electrochemical
	splitting of water at the heterogeneous interface of nickel and iron oxide.
	Nature Commun. 2019, 10, 5599.
	6. A. V. Salkar; S. V. Bhosale; P. P. Morajkar, CH-6: Nanostructured
	WO _{3-x} Based Advanced Supercapacitors for Sustainable Energy
	Applications, Advances in Metal Oxides and Their Composites for
	Emerging Applications; Elsevier, 2022, 213–238. ELSEVIER.
	7. A.V. Salker, Catalysis: Principles and Basic Concepts, Scientific
	International, 2019.
Course	1. Students will be able to design a nanocatalysts for adsorption application.
Outcomes:	2. Students will be able to interpret characterization data of nano catalysts.
	3. Students will be able to design a catalyst for environmental and energy
	applications.
	4. Students will learn about semiconductor catalysis.