Name of the Programme: M.Sc. Part-II (Physical Chemistry)

Course Code: CHP-624 **Title of the course:** Colloids and Surface Chemistry

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at M.Sc. I.	
for the		
course:		
	1. To introduce some core concepts of colloidal chemistry	including
Course	DLVO theory, electrokinetic phenomena and diversity in colloid	ds.
Objective:	2. To introduce fundamental concepts and applications of co	olloids in
3	day-today life.	
Content	1. Colloids and Liquid Surfaces	No of
	a. Colloids: General introduction. classification and	hours
	structural characteristics of colloidal system.	
	preparation and purification	10
	b. Microscopic picture of liquid surface	10
	c. Surface tension and its measurement Surfactant and	
	reduction of surface tension Curved liquid surfaces	
	d Nucleation theory	
	e Surface modification: self-assembly monolayer	
	formation Physisorption of polymers Polymerization	
	on surfaces	
	2 Electrostatic Forces and Electrokinetic Phenomenon	12
	a Electrical double layer Surface interactions between	12
	surfaces (dipole, induced dipole, H-bonding)	
	b Surface forces: Van der Waals forces between	
	molecules Surface energy and Hamaker constant	
	Measurement of surface forces. The DLVO theory	
	c. Charged surfaces such as mercury silver indide and	
	ovides Measurement of surface charge densities	
	d Electrocanillarity theory and measurement	
	e. Electrokinetic phenomena: concept of zeta potential	
	Electronymotic phenomena. concept of zeta potential.	
	and sedimentation potential	
	f Contact angle and its massurements. Wetting and	
	dewetting Important wetting geometries	
	deweiting, important weiting geometries.	
	3 Colloidal Stability	8
	a Charged colloids Electrical charge distribution at	U
	a. Charged conords. Electrical charge distribution at	
	h Factors affecting colloidal stability Effect of	
	o. ractors ancering conordar stability. Effect of	
	electrolyte.	

I		
	c. Flocculation and coagulation. Kinetics of coagulation	
	d. Steric stabilization of solid and liquid colloids	10
	4. Preparation of colloids	12
	a. Chemical methods for synthesis of colloids: Sol-gel	
	method, polyol synthesis, plasma enhanced chemical	
	vapor deposition, hydrothermal synthesis	
	b. Colloidal synthesis of semiconductor nanoparticles:	
	Hot-injection synthesis. Synthesis of colloidal core-shell	
	heterostructures	
	c. Surface directed colloidal patterning: Colloidal self-	
	assembly approaches	
	d. Reducing agents in colloidal nanoparticle synthesis	
	5. Surfactants, Micelles, Emulsions and Thin Liquid	13
	Films	
	a. Classification of surfactants. Solubilization and	
	micelle formation	
	b. Spherical micelles: cmc and influence of temperature.	
	Thermodynamics of micellization. Structure of surfactant	
	aggregates.	
	c. Emulsions: Macro and microemulsions, properties,	
	formation and factors affecting the stability. Evolution	
	and aging. Coalescence and demulsification. Size of	
	droplets. Elasticity of surfactant films.	
	d. Thin films on surfaces of liquids: Introduction and	
	phases. Bubbles and foams. Optical and X-Ray methods	
	to study monolayers.	
	e. Langmuir Blodgett Transfer	
	6. Applications of Colloids in Science, Technology and	5
	Industry	
	a. Colloids as drug delivery agents	
	b. Colloidal nanocrystals for optical applications and	
	solar cells.	
	c. Biomedical applications	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assig	nments /
	presentations / self-study or a combination of some of these ca	n also be
	used. ICT mode should be preferred. Sessions should be inter	ractive in
	nature to enable peer group learning.	
References /	H. J. Butt, K. Graf and M. Kappl, Physics and Chem	istry of
Readings	Interfaces, Wiley-VCH, 2003.	-
-	A. W. Adamson and A.P.Gast, Physical Chemistry of S	urfaces;
	Wiley-VCH, 1997, 6 th edition	
	R. D. Vold and M. J. Vold, Colloid and Interface Ch	emistry,
	Addison-Wesley, 1983.	-

	K. S. Birdi, Surface and Colloid Chemistry, Principles and
	Applications; Taylor & Francis Group ,2010.
	D. Meyers, Surfaces, Interfaces and Colloids, Principles and
	Applications; John Wiley & Sons, Inc. 1999. 2 nd edition.
	E. D. Shchukin, A. V. Portsov, E. A. Ameline, A. G. 7. Learve
	Studies in Interface Science, Colloid and Surface Chemistry;
	Elsevier, 2001.
	D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4 th Ed
	Elsevier, 1992.
	F. Caruso, Colloids and Colloid Assemblies, Wiley-WCH, 2004
	V. Lesnyak, M . Yarema, S. Miau, Culluidal Gemiconductor
	Nanocrystals: Synthesis, Properties and Applications, Frontiers
	Media SA, 2020.
Course Outcome:	1. Students will be able to explain various fundamental and core
	concepts of colloid chemistry.
	2. Students should be in a position to apply the knowledge of colloidal
	chemistry for their dissertation and research work
	3. Students should be in a position to apply these concepts during the lab
	course in physical chemistry.
	4. Students will understand applications of colloids.