SEMESTER I

Name of the Programme: MCA

Course Code: CSA-500

Title of Course: Data Structures & Algorithms

Number of Credits: 2 (2L-0T-0P)

Effective	from AY	: 2022-23

Effective from A		
Prerequisites	Programming using any Programming Language	
for the course		
Objectives	The aim of the course is to emphasize the importance of data structures	
	in implementing efficient algorithms. It provides an exposure to various	
	algorithm design techniques and an introduction to algorithm analysis.	5 hours
<u>Content</u>	Revision of Programming & Data Structures	
	Problem solving, Data Types: Primitive and User Defined	
	Selection Constructs, Repetition Constructs, Recursion	
	Pointers	
	Algorithm Representation: - Pseudocode and flowcharts	
	Three level Approach	
	Abstract Data Types (ADTs)	
	Basic Linear Data Structures (LinkedList, Stack, Queue)	
	Algorithm Analysis	3 hours
	Analysis of Algorithms	
	Algorithm Complexity: Space and Time	
	Cases of Complexity: Best, Worst and Average	
	Growth of Functions: Asymptotic Notation	
	Advanced Linear Data Structures	4 hours
	Variants of Linked List and its applications (e.g. Polynomial addition,	+ nours
	Sparse matrices)	
	Applications of stacks (e.g. Infix-to-Postfix conversion, Evaluating Postfix	
	Expressions, Bracket Matching)	
	Variants of Queue and Applications	
	Nonlinear Data Structures:	10
	Trees: Binary Search Trees, AVL Trees, B-trees & variants.	hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms	
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue)	
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations	
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue)	
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations	
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search	hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy	hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy:	hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort)	hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search	hours 3 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm	hours 3 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms	hours 3 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's)	hours 3 hours 2 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming	hours 3 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants.Tree Traversal AlgorithmsHeaps and its applications (e.g. implementation of Priority Queue)Graph: Adjacency Matrix and Adjacency List RepresentationsGraph Traversal Algorithms: Breadth First Search and Depth First SearchDivide & Conquer StrategyAlgorithms based on Divide and Conquer Strategy:Sorting Algorithms (QuickSort, MergeSort)Binary SearchGreedy AlgorithmsHuffman Coding AlgorithmMinimum Cost Spanning Tree (Prim's, Kruskal's)Single Source Shortest Path (Dijkstra's)Dynamic ProgrammingCoin Change Problem	hours 3 hours 2 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming Coin Change Problem Longest Common Subsequence	hours 3 hours 2 hours
Pedagogy	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall)	hours 3 hours 2 hours
Pedagogy	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall) • Lectures/Tutorials/Assignments/Quizzes	hours 3 hours 2 hours
Pedagogy	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall) • Lectures/Tutorials/Assignments/Quizzes • Each data structure should be explained along with implementation of	hours 3 hours 2 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall) • Lectures/Tutorials/Assignments/Quizzes • Each data structure should be explained along with implementation of its ADT, its applications and complexity	hours 3 hours 2 hours 3 hours
References/	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall) • Lectures/Tutorials/Assignments/Quizzes • Each data structure should be explained along with implementation of its ADT, its applications and complexity 1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Freed. "Fundamental	hours 3 hours 2 hours 3 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's) Single Source Shortest Path (Dijkstra's) Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall) • Lectures/Tutorials/Assignments/Quizzes • Each data structure should be explained along with implementation of its ADT, its applications and complexity	hours 3 hours 2 hours 3 hours s of data

-		
	Latest Edition	
	3. Allen, Weiss Mark. Data structures and algorithm analysis in C. Pearson	
	Education India, Latest Edition.	
	4. Dasgupta, Papadimitriou, and Vazirani, Algorithms, by McGraw-Hill.	
	5. Jeri R. Hanly and Eliot B. Koffman "Problem Solving and Program Design in C"	
	Pearson Education, VII Edition, 2012	
	6. R.G.Dromey "How to Solve it by Computer ", PHI , Latest Edition	
<u>Course</u>	Upon successful completion of the course, a student will be able to	
<u>Outcomes</u>	• Implement common data structures such as lists, stacks, queues, graphs, and	
	binary trees for solving programming problems.	
	• Identify and use appropriate data structures in the context of a solution to a	
	given problem.	
	 Be able to analyze the complexity of a given algorithm 	