Name of the Programme: MCA

Course Code: CSA-502

Title of the Course: Operating System

Number of Credits: 3 (3L-0T-0P) Effective from AY: 2022-23

Prerequisites	Computer Architecture Basics	
	Computer Architecture basics	
for the course	This source feetings on the principles and understanding of the	
<u>Objectives</u>	This course focuses on the principles and understanding of the	
	functionality of an operating system and evaluates their trade-off in	
	various environments.	
<u>Content</u>	Introduction and Systems Structures	3 hours
	Computing Environments, Operating-systems Services, System Calls,	
	System Programs, Virtual Machines, monolithic and micro kernel	
	architectures	
	Process Management	5 hours
	Process - Concept and states, Process Creation and Control,	
	Scheduling Criteria, Scheduling Algorithms, MultiLevel Queues,	
	Multiple-processor scheduling, Real time CPU scheduling	
	Threads	5 hours
	Motivation and Challenges, Multithreading Models, Threading	
	Issues, Thread libraries, Thread scheduling	
	Process Synchronization	5 hours
	Cooperating processes and Race Conditions, The critical-section	
	problem, Peterson's solution, mutex locks, Synchronization	
	Hardware, Semaphores and their Implementation, Classic problems	
	of synchronization	
	Inter process Communication,	3 hours
	Overview of IPC, Examples of IPC Systems, Communication in Client	3 113 413
	Server Systems.	
	Deadlocks	5 hours
	System Model, Deadlock characterization, Methods for Handling	5 110013
	Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock	
	Detection, Recovery From Deadlock	
	Memory Management	5 hours
	Hardware Support, Address Binding, Swapping, Contiguous Memory	Jilouis
	Allocation, Fragmentation, Memory Protection, Paging, Structure of	
	the page table, Segmentation, Example: Intel architecture	
		E la avera
	Virtual-Memory Management	5 hours
	Background, Demand Paging, Copy-on-write, Page Replacement	
	algorithms, Allocation of Frames, Thrashing, Allocating Kernel	
	Memory	
	File System	5 hours
	File Concept, Access Methods, Directory Structure, File-system	
	mounting, File sharing, Protection. Virtual file systems,	
	Implementing File Systems, Directory implementation, Allocation	
	Methods, Free-space Management, Efficiency and performance,	
	Recovery, Log-structured file systems	
	Secondary-storage Structure	4 hours
	Overview of Mass-storage Structure, Disk Structure, Disk	
	Attachment, Disk Scheduling, Disk Management, Swap-Space	
	Management	
<u>Pedagogy</u>	lectures/ tutorials/assignments/class presentations and	
	debates/peer reviews/self-study.	
References/	Main Reading	

Readings	1. Silberschatz ,Galvin and Gagne , Operating systems Principles –
	8th edition or Later(Wiley Asia Student Edition)
	2. Deitel H.M., "An Introduction to Operating Systems", Addison
	Wesley Publishers Company, Latest Edition
	3. Milenkovic M., "Operating Systems: Concepts and Design",
	McGraw Hill International Edition Computer Science series ;
	Latest Edition
	4. Tanenbaum A. S., Modern Operating Systems", Prentice Hall of
	India Pvt. Ltd.,Latest Edition
	5. Operating Systems – a modern perspective - Gary Nutt , Addison
	Wesley, Latest Edition
<u>Course</u>	1. To understand the services provided by and the design of an
<u>Outcomes</u>	operating system.
	2. To understand the structure and organization of the file system.
	3. To understand what a process is and how processes are
	synchronized and scheduled.
	4. To understand different approaches to memory management.
	5. Students should be able to understand the implementation and
	use of system calls for managing processes, memory and the file
	system.
	6. Students should understand the data structures and algorithms
	used to implement an OS.
	7. Evaluate operating system implementations