Name of the Programme: MCA

Course Code: CSA-504

Title of Course: Data Structures & Algorithms Lab

Number of Credits: 2 (OL-OT-2P)
Effective from AY: 2022-23

Effective from AY: 2022-23		
<u>Prerequisites</u>	Programing Knowledge	
for the course		
<u>Objectives</u>	To develop skills to design and implement linear and nonlinear data	
	structures and to identify the most appropriate data structure for	
	solving a real world problem.	
Content	Lab Assignments may be based on the following	
	Advanced Linear Data Structures	8hours
	Infix-to-Postfix conversion,	
	Evaluating Postfix Expressions,	
	Bracket Matching	
	Non-linear data structures	20hours
	Binary Trees	20110013
	Tree Traversal Algorithms	
	Binary Search Trees	
	Heap	
	·	
	Priority Queue using Heap	
	Heap Sort	
	Graph implementation using Adjacency list and matrix	
	Graph Traversal Algorithms	421
	Divide & Conquer Strategy	12hours
	MergeSort	
	QuickSort	
	Binary Search Algorithm	
	Greedy Algorithms	12hours
	Huffman Coding Algorithm	
	Prims' and Kruskal's Algorithm	
	Dijkstra's Algorithm	
	Dynamic Programming	8hours
	Coin Change Problem	
	Longest Common Subsequence	
	Floyd-Warshall Algorithm	
	A Mini Project	
Pedagogy	Programming assignments/ discussions/ self-review/ peer-review/	
	testing of code/ debugging of code/ projects	
References/	1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Freed.	
Readings	"Fundamentals of data structures in C" WH Freeman & Co., Latest	
	edition.	
	2. Thomas H. Cormen, Charles E. Leiserson, et al "Introduction to	
	Algorithms", Latest Edition	
	3. Allen, Weiss Mark. "Data structures and algorithm analysis in C."	
	Pearson Education India, Latest Edition.	
	4. Dasgupta, Papadimitriou, and Vazirani, "Algorithms" McGraw-Hill.	
	2017	
Course	Upon successful completion of the course, a student will be able to	
Outcomes	 Implement common data structures such as lists, stacks, queues, 	
<u>Succomes</u>	graphs, and binary trees for solving programming problems.	
	Identify and use appropriate data structures in the context of a	
	solution to a given problem.	