Name of the Programme: MCA

Course Code: CSA-508

Title of Course: Database Management Systems

Number of Credits: 2 (2L-0T-0P) Effective from AY: 2022-23

Effective from A	Y: 2022-23	
<u>Prerequisites</u>	A High-Level Programming Language,	
for the course	Data Structures and Algorithms(CS101),	
	Operating Systems(CS103).	
Objectives	This course will enable the learner to understand the different issues	
	involved in the design and implementation of a database system and	
	provide both theoretical knowledge and practical skills required in	
	the creation and use of a Relational DataBase Management System.	
Content	Basic concepts: Database & Database Users, Characteristics of the	3 hours
content	Database Approach, Database Systems, Concepts & Architecture	5 Hours
	Data Models(RDBMS, Legacy systems, Object Oriented, NoSQL),	
	Schemes & Instances DBMS Architecture of Data Independence,	
	Database languages & Interfaces	
	Data Modelling using the Entity – Relationship approach	4 hours
	Relational Model, Languages & Systems	5 hours
	Relational Data Model & Relational Algebra Relational Model	
	Concepts Relational Model Constraints, Relational Algebra/Relational	
	Calculus	
	SQL-A Relational Database Language Data	2 hours
	SQL - DDL, DML. Views & Queries in SQL. Specifying Constraints &	2 110013
	Indexes in SQL.	
	Nested Subqueries, correlated Subqueries	
	Advanced SQL	2 hours
	Embedded SQL, Dynamic SQL, Triggers and Stored Procedures.	Zilouis
		5 hours
	Relational Database Design	5 nours
	Function Dependencies & Normalization for Relational Database	
	Functional Dependencies Normal forms based on primary keys (1NF,	
	2NF, 3NF, BCNF) Covers of Functional Dependencies, Canonical	
	covers. Lossless join and Dependency preserving decomposition	
	algorithms.	
	Transactions and Recovery Techniques	4 hours
	Concept of a transaction, Recovery concepts, Recovery Techniques.	
	Concurrency Control	5 hours
	Serializability, Locking Techniques, Time stamp ordering Granularity	
	of Data items	
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
References/	Main Reading	
<u>Readings</u>	1. Korth, Silberchartz, " Database System Concepts" McGrawhill	
	Publication.	
	2. Elmasri and Navathe, "Fundamentals of Database Systems",	
	Addison Wesley, New Delhi.	
	3. Database Management Systems –R. Ramakrishnan, J.Gehrke –	
	T.McGraw Hill	
	4. Desai B., " An Introduction to Database Concepts", Galgotia	
	Publications, New Delhi.	
	5. 2. Rob,Coronel, "Database Systems (Design, Implementation and	
	Management)"	
	6. Date C. J., " An Introduction to Database Systems", Publication	
	House, New Delhi.	
Course	Understand and evaluate the role of a DBMS in information	
COUISE	11. Oliueistaliu aliu evaluate tile fole ol a DBIVIS III INTORMATION	

Outcomes

Technology applications in Organizations.

- 2. Recognise and use logical design methods and tools required in the design of DB applications.
- 3. Understand the relational database design principles.
- 4. Implement a database Solution to an IT Platform.
- 5. Understand the basics of SQL and construct queries using SQL.
- 6. Develop sophisticated queries to extract information from databases.
- 7. Use embedded SQL queries in a Host Level Language. Understand how the DBMS manages and recovers from concurrent and multiple transactions.