Name of the Programme: MCA Course Code: CSA-509

Title of the Course: Machine Learning

Number of Credits: 4 (4L+0T-0P) Effective from AY: 2022-23

Prerequisites	Basic concepts of Linear Algebra, Probability theory	
tor the course		
Objectives:	This course provides students with an in-depth introduction to three main areas of Machine Learning: supervised and unsupervised and reinforcement learning. This course will cover some of the main	
	models and algorithms for regression. classification, clustering and	
	Markov decision processes. Topics will include linear and logistic	
	regression, regularisation, SVMs and kernel methods, ANNs,	
	clustering, and dimensionality reduction ,sequential learning Like	
	HMM and reinforcement learning.	
<u>Content:</u>	1. Introduction:- well posed learning problem – designing a learning	4 hours
	system-perspectives and issues in machine learning.	C h a una
	2. Concept learning – concept learning task –notation –inductive	6 nours
	candidate elimination algorithm-decision tree -random forest	
	3 Linear regression - logistic regression-Support vector machine	7 hours
	kernel- Model selection and feature selection-Ensemble methods:	7 110013
	Bagging, boosting, Evaluating and debugging learning algorithms.	
	4. Continuous Latent Variables-Revision of Principal Component	7 hours
	Analysis -Maximum variance formulation - Minimum-error	
	formulation - Applications of PCA - PCA for high-dimensional data.	
	5. Neural Networks -Feed-forward Network Functions – perceptron -	10 hours
	Weight-space symmetries -Network Training - Parameter	
	optimization -Local quadratic approximation - Use of gradient	
	information - Gradient descent optimization - Error Backpropagation	
	- Evaluation of error-function derivatives - A simple example -	
	Efficiency of backpropagation .	
	6. Probabilistic model – The normal distribution and its geometric	9 hours
	interpretation-probabilistic models for categorical data -using naïve	
	Bayes model for classification, training a naïve Bayes model -	
	discriminative learning by optimizing conditional likelihood -	
	probability models with hidden variables: Expectation-Maximization,	
	Gaussian mixture model	Г h a u u a
	7. Distance-based models – neighbour and exemplers -nearest-	5 nours
	algorithm clustering around medoids silhouetees biorarchical	
	clustering from kernels to distances	
	8 Sequential Data - Markov Models - Hidden Markov Models -	7 hours
	Maximum likelihood for the HMM -The forward-backward algorithm -	, nours
	The sum-product algorithm for the HMM -Scaling factors - The Viterbi	
	algorithm.	
	9. Reinforcement learning - Introduction- learning task-Q learing-non	5 hours
	deterministic rewards and actions-temporal difference learning.	
Pedagogy:	Lectures/ tutorials/assignments/self-study	
References/R	Main Reading :-	
<u>eadings</u>	1. Introduction to Statistical Learning, Gareth James, Daniela Witten,	
	Trevor Hastie, Robert Tibshirani, Springer, 2013.	
	2. EthemAlpaydin, Introduction to Machine Learning, MIT Press.	
	3. Richard O. Duda, Peter E. Hart, David G. Stork Pattern	
	Classification,.	

	4. Peter Flach , Machine Learning , Cambridge	
	5.Christopher M. Bishop,Pattern recognition and machine Learning,	
	springer.	
	6.Deep Learning, Ian Good fellow, MIT press	
	7.Tom Michele, Machine Learning, McGraw-Hill.	
<u>Course</u>	By the end of the course , students should:	
<u>Outcomes</u>	• Develop an appreciation for what is involved in learning from data.	
	Understand a wide variety of learning algorithms.	
	• Understand how to apply a variety of learning algorithms to data.	
	Understand how to perform evaluation of learning algorithms and	
	model selection.	
	• Equips them with a general understanding of deep learning.	